
DJ Link Packet Analysis

James Elliott
Deep Symmetry, LLC

February 18, 2020

Abstract

Theprotocol used by Pioneer professional DJ equipment to communicate and
coordinate performances can be monitored to provide useful information for syn-
chronizingother software, such as light shows and sequencers. By creating a “virtual
CDJ” that sends appropriate packets to the network, other devices can be induced
to send packets containing even more useful information about their state. This
article documents what has been learned so far about the protocol, and how to ac-
complish these tasks.

Contents
1 Mixer Startup 4

2 CDJ Startup 6

3 Tracking BPM and Beats 7

4 Creating a Virtual CDJ 9
4.1 Mixer Status Packets . 10
4.2 CDJ Status Packets . 11
4.3 Rekordbox Status Packets . 17

5 Sync and Tempo Master 18
5.1 Sync Control . 18
5.2 Tempo Master Assignment . 18
5.3 Tempo Master Handoff . 18
5.4 Unsolicited Handoff . 20

6 Track Metadata 20
6.1 Field Types . 21

6.1.1 Number Fields . 21

1

CONTENTS 2

6.1.2 Binary Fields . 21
6.1.3 String Fields . 22

6.2 Messages . 22
6.3 Rekordbox Track Metadata . 24

6.3.1 Track Metadata Item 1: Title 28
6.3.2 Track Metadata Item 2: Artist 28
6.3.3 Track Metadata Item 3: Album Title 28
6.3.4 Track Metadata Item 4: Duration 28
6.3.5 Track Metadata Item 5: Tempo 29
6.3.6 Track Metadata Item 6: Comment 29
6.3.7 Track Metadata Item 7: Key 29
6.3.8 Track Metadata Item 8: Rating 29
6.3.9 Track Metadata Item 9: Color 29
6.3.10 Track Metadata Item 10: Genre 29
6.3.11 Track Metadata Item 11: Date Added 29

6.4 Menu Footer Response . 29
6.5 Menu Item Types . 30
6.6 Non-Rekordbox Track Metadata 32
6.7 Album Art . 32
6.8 Beat Grids . 33
6.9 Requesting Track Waveforms . 35
6.10 Requesting Nxs2 Track Waveforms 39
6.11 Requesting Cue Points and Loops 43
6.12 Requesting Nxs2 Cue Points and Loops 45
6.13 Requesting All Tracks . 49

6.13.1 Alternate Track List Sort Orders 51
6.14 Playlists . 52
6.15 Disconnecting . 53
6.16 Experimenting with Metadata 53

7 Menu Requests 55
7.1 Known Menu Request Types . 56
7.2 Search . 58

8 Fader Start 58

9 Channels On Air 59

10 Loading Tracks 59

11 Media Slot Queries 60

CONTENTS 3

12 What’s Missing? 62
12.1 Background Research . 62
12.2 Mysterious Values . 62
12.3 Reading Data with Four Players 63
12.4 CDJ Packets to Rekordbox . 63
12.5 Dysentery . 63

List of Figures 63

List of Tables 65

1 MIXER STARTUP 4

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 0a 00Header {
Device Name (padded with 00)

}Name

01 02 𝑙𝑒𝑛𝑝 02

Figure 1: Initial announcement packets from Mixer

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 00 00Header {
Device Name (padded with 00)

}Name

01 02 𝑙𝑒𝑛𝑝 𝑁 02 MAC address

Figure 2: First-stage Mixer device number assignment packets

1 Mixer Startup
When the mixer starts up, after it obtains an IP address (or gives up on doing that
and self-assigns an address), it sends out what look like a series of packets1 simply
announcing its existence to UDP port 50000 on the broadcast address of the local
network.

These have a data length2 of 25 bytes, appear roughly every 300 milliseconds,
and have the content shown in Figure 1.

Byte 0a (inside what is labeled the header) is bolded because its value changes
in the different types of packets which follow.

The byte following the device name (at byte 20) seems to always have the value
1 in every kind of packet seen. The next byte is bolded as well because it seems to
indicate the structure of the remainder of the packet. The value 02 is followed by
a two-byte value 𝑙𝑒𝑛𝑝 that indicates the length of the entire packet (including the
preceding header bytes), and followed by the payload. In the case of this kind of
packet, the length is 0025, and the payload is the single-byte value 02.

After about three of these packets are sent, another series of three begins. It
is not clear what purpose these packets serve, because they are not yet asserting
ownership of any device number; perhaps they are used when CDJs are powering
up as part of the mechanism the mixer can use to tell them which device number
to use based on which network port they are connected to?

In any case, these three packets have a data length of 2c bytes, reflected in
𝑙𝑒𝑛𝑝, are again sent toUDP port 50000 on the local network broadcast address, at

1The packet capture described in this analysis can be found at https://github.com/
deep-symmetry/dysentery/raw/master/doc/assets/powerup.pcapng

2Values within packets, packet lengths, and byte offsets are all shown in hexadecimal.

https://github.com/deep-symmetry/dysentery/raw/master/doc/assets/powerup.pcapng
https://github.com/deep-symmetry/dysentery/raw/master/doc/assets/powerup.pcapng

1 MIXER STARTUP 5

roughly 300 millisecond intervals, and have the content shown in Figure 2.
The value𝑁 at byte 24 is 01, 02, or 03, depending on whether this is the first,

second, or third time the packet is sent.
After these comes another series of three numbered packets. These appear to

be claiming the device number for a particular device, as well as announcing the
IP address at which it can be found. They have a data length and 𝑙𝑒𝑛𝑝 value of
32 bytes, and are again sent to UDP port 50000 on the local network broadcast
address, at roughly 300 millisecond intervals, with the content shown in Figure 3.

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 02 00Header {
Device Name (padded with 00)

}Name

01 02 𝑙𝑒𝑛𝑝 IP address MAC address 𝐷 𝑁
02 01

Figure 3: Second-stage Mixer device number assignment packets

I identify these as claiming/identifying the device number because the value𝐷
at byte 2e is the same as the device number that the mixer uses to identify itself
(21) and the same is true for the corresponding packets seen from the CDJs (they
use device numbers 02 and 03, as they are connected to those ports/channels on
the mixer).

As with the previous series of three packets, the value𝑁 at byte 2f takes on the
values 01, 02, and 03 in the three packets.

These are followed by another three packets, perhaps the last stage of claiming
the device number, again at 300 millisecond intervals, to the same port 50000.
These shorter packets have 26 bytes of data and the content shown in Figure 4.

As before the value𝐷 at byte24 is the same as the device number that themixer
uses to identify itself (21) and 𝑁 at byte 25 takes on the values 01, 02, and 03 in
the three packets.

Once those are sent, the mixer seems to settle down and send what looks like
a keep-alive packet to retain presence on the network and ownership of its device
number, at a less frequent interval. These packets are 36 bytes long, again sent to

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 04 00Header {
Device Name (padded with 00)

}Name

01 02 𝑙𝑒𝑛𝑝 01 02 00 26 𝐷 𝑁

Figure 4: Final-stage Mixer device number assignment packets

2 CDJ STARTUP 6

port 50000 on the local network broadcast address, roughly every second and a
half. They have the content shown in Figure 5.

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 06 00Header {
Device Name (padded with 00)

}Name

01 02 𝑙𝑒𝑛𝑝 𝐷 02 MAC address IP address
01 00 00 00 02 00

Figure 5: Mixer keep-alive packets

2 CDJ Startup
When a CDJ starts up the procedure and packets are nearly identical, with groups
of three packets sent at 300millisecond intervals toport 50000of the local network
broadcast address. The only difference between Figure 6 and Figure 1 is the final
byte, which is 01 for the CDJ, and was 02 for the mixer.

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 0a 00Header {
Device Name (padded with 00)

}Name

01 02 𝑙𝑒𝑛𝑝 01

Figure 6: Initial announcement packets from CDJ

Similarly, the next series of three packets from the CDJ are nearly identical to
those from themixer. The only difference between Figure 7 and Figure 2 is byte 25
(immediately after the packet counter𝑁), which again is 01 for the CDJ, and was
02 for the mixer.

However it appears that in this capture theCDJ skips the second stage of claim-
ing a device number, probably because it is configured to be automatically assigned
a device number based on the port of the mixer to which it is connected, and we
cannot see a packet that the mixer sent it assigning it that device number. Instead,
it jumps right to the end of the third and final stage, sending a single26-byte packet
with header byte 0a set to 04 (which identified the three packets of the third stage
when the mixer was starting up), with content identical to Figure 4.

Even though the value of 𝑁 is 01, this is the only packet in this series that the
CDJ sends. It would probably behave differently if configured to assign its own
device number (behaving like we saw the mixer behave in claiming its device num-
ber).

3 TRACKING BPM AND BEATS 7

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 00 00Header {
Device Name (padded with 00)

}Name

01 02 𝑙𝑒𝑛𝑝 𝑁 01 MAC address

Figure 7: First-stage CDJ device number assignment packets

TheCDJ thenmoves to the keep-alive stage, sending out 36-byte packets with
the content shown in Figure 8.

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 06 00Header {
Device Name (padded with 00)

}Name

01 02 𝑙𝑒𝑛𝑝 𝐷 01 MAC address IP address
01 00 00 00 01 00

Figure 8: CDJ keep-alive packets

As seems to always be the case when comparing mixer and CDJ packets, the
difference between this and Figure 5 is that byte 25 (following the device number
𝐷) has the value 01 rather than 02, and the same is true of the second-to-last byte
in each of the packets. (Byte 34 is 01 in Figure 8 and 02 in Figure 5.

3 Tracking BPM and Beats
For some time now, Afterglow3 has been able to synchronize its light shows with
music being played on Pioneer equipment by observing packets broadcast by the
mixer to port 50001. Until recently, however, it was not possible to tell which
player was the master, so there was no way to determine the down beat (the start
of each measure). Now that it is possible to to determine which CDJ is the master
player using the packets described in Section 4, these beat packets have become far
more useful, and Afterglow will soon be using them to track the down beat based
on the beat number reported by the master player.

To track beats, open a socket and bind it to port 50001. The devices seem to
broadcast twodifferent kinds of packets to this port, a shorter packet containing2d
bytes of data, and a longer packet containing 60 bytes. The shorter packets contain
information about which channels are on-air, and fader start/stop commands to
the players, as described in Section 9.

3https://github.com/deep-symmetry/afterglow#afterglow

https://github.com/deep-symmetry/afterglow#afterglow

3 TRACKING BPM AND BEATS 8

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 2800

Device Name (padded with 00) 0110

00 𝐷 𝑙𝑒𝑛𝑟 𝑛𝑒𝑥𝑡𝐵𝑒𝑎𝑡 2𝑛𝑑𝐵𝑒𝑎𝑡 𝑛𝑒𝑥𝑡𝐵𝑎𝑟20

4𝑡ℎ𝐵𝑒𝑎𝑡 2𝑛𝑑𝐵𝑎𝑟 8𝑡ℎ𝐵𝑒𝑎𝑡 ff ff ff ff30

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff40

ff ff ff ff 𝑃𝑖𝑡𝑐ℎ 00 00 𝐵𝑃𝑀 𝐵𝑏 00 00 𝐷50

Figure 9: Beat packets

The 60-byte packets are sent on each beat, so even the arrival of the packet is
interesting information, it means that the player is starting a new beat. (CDJs send
these packets only when they are playing and only for rekordbox-analyzed tracks.
The mixer sends them all the time, acting as a backup metronome when no other
device is counting beats.) The content of these packets is shown in Figure 9.

This introduces our first packet structure variant following the device name. As
always the byte after the name has the value 1, but the subtype value which follows
that (at byte 20) has the value 00 here, rather than 02 as we saw in the startup
packets. In packets of subtype 00 the subtype indicator is followed by the Device
Number𝐷 at byte 21; this is the Player Number as displayed on the CDJ itself, or
21 for the mixer, or another value for a computer running rekordbox. And that is
followed by a different kind of length indicator: 𝑙𝑒𝑛𝑟 at bytes 22–23 reports the
length of the rest of the packet, in otherwords, the number of byteswhich come after
𝑙𝑒𝑛𝑟. In this packet 𝑙𝑒𝑛𝑟 has the value 003c. For some reason, there is a redundant
copy of𝐷 at the end of the packet, in byte 5f. That seems common in packets with
subtype 00, and is one of many inefficiencies in the protocol.

To facilitate synchronization of variable-tempo tracks, the number of millisec-
onds after which a variety of upcoming beats will occur are reported. Note that the
timing values for all these upcoming beats are always reported as if the track was being
played at normal speed, with a pitch adjustment of 0%. If a pitch adjustment is in
effect, you will need to perform the calculation to scale the beat timing values yourself.
𝑛𝑒𝑥𝑡𝐵𝑒𝑎𝑡 at bytes 24–27 is the number of milliseconds in which the very next
beat will arrive. 2𝑛𝑑𝐵𝑒𝑎𝑡 (bytes 28–2b) is the number of milliseconds until the
beat after that. 𝑛𝑒𝑥𝑡𝐵𝑎𝑟 (bytes 2c–2f) reports the number of milliseconds until
the next measure of music begins, which may be from 1 to 4 beats away. 4𝑡ℎ𝐵𝑒𝑎𝑡
(bytes 30–33) reports how many millisecond will elapse until the fourth upcom-
ing beat; 2𝑛𝑑𝐵𝑎𝑟 (bytes 34–37) the interval until the second measure after the
current one begins (which will occur in 5 to 8 beats, depending how far into the
current measure we have reached); and 8𝑡ℎ𝐵𝑒𝑎𝑡 (bytes 38–3b) tells how many
millieconds we have to wait until the eighth upcoming beat will arrive.

4 CREATING A VIRTUAL CDJ 9

The player’s current pitch adjustment4 can be found in bytes 54–57, labeled
𝑃𝑖𝑡𝑐ℎ. It represents a three-bytepitch adjustmentpercentage, where0x00100000
represents no adjustment (0%), 0x00000000 represents slowing all the way to a
complete stop (−100%, reachable only in Wide tempo mode), and 0x00200000
represents playing at double speed (+100%).

The pitch adjustment percentage represented by 𝑃𝑖𝑡𝑐ℎ is calculated by multi-
pling the following (hexadecimal) equation by decimal 100:

(𝑏𝑦𝑡𝑒[55] × 10000 + 𝑏𝑦𝑡𝑒[56] × 100 + 𝑏𝑦𝑡𝑒[57]) − 100000
100000

Thecurrent BPMof the track playing on the device5 can be found at bytes 5a–
5b (labeled 𝐵𝑃𝑀). It is a two-byte integer representing one hundred times the
current track BPM. So, the current track BPM value to two decimal places can be
calculated as (in this case only the byte offsets are hexadecimal):

𝑏𝑦𝑡𝑒[5a] × 256 + 𝑏𝑦𝑡𝑒[5b]
100

In order to obtain the actual playing BPM (the value shown in the BPM dis-
play), this valuemust bemultiplied by the current pitch adjustment. Since calculat-
ing the effective BPM reported by a CDJ is a common operation, here a simplified
hexadecimal equation that results in the effective BPM to two decimal places, by
combinining the𝐵𝑃𝑀 and 𝑃𝑖𝑡𝑐ℎ values:6

(𝑏𝑦𝑡𝑒[5a] × 100 + 𝑏𝑦𝑡𝑒[5b]) × (𝑏𝑦𝑡𝑒[55] × 10000 + 𝑏𝑦𝑡𝑒[56] × 100 + 𝑏𝑦𝑡𝑒[57])
6400000

The counter 𝐵𝑏 at byte 5c counts out the beat within each bar, cycling 1 →
2 → 3 → 4 repeatedly, and can be used to identify the down beat if it is coming
from the master player.

4 Creating a Virtual CDJ
Although some useful information can be obtained simply by watching broadcast
traffic on a network containing Pioneer gear, in order to get important details it is
necessary to cause the gear to send you information directly. This can be done by
simulating a “Virtual CDJ”.7

Todo this, bind aUDPserver socket toport 50002on thenetwork interface on
which you are receivingDJ-Link traffic, and start sending keep-alive packets to port

4The mixer always reports a pitch of+0%.
5The mixer passes along the BPM of the master player.
6Since themixer always reports a pitch adjustment of+0%, its𝐵𝑃𝑀 value can be used directly with-

out this additional step.
7Thanks are due to Diogo Santos for discovering the trick of creating a virtual CDJ in order to receive

detailed status information from other devices.

4 CREATING A VIRTUAL CDJ 10

50000 on the broadcast address as if you were a CDJ. Follow the structure shown
in Figure 8, but use the actual MAC and IP addresses of the network interface on
which you are receiving DJ-Link traffic, so the devices can see how to reach you.

You can use a value like 05 for𝐷 (the device/player number) so as not to con-
flict with any actual players you have on the network, and any name youwould like.
As long as you are sending these packets roughly every 1.5 seconds, the other play-
ers and mixers will begin sending packets directly to the socket you have opened
on port 50002.

 But note that use of a non-standard player number (outside the range
1–4) will interfere with your ability to perfrom metadata requests
using dbserver queries as described in Section 6.2. In situations
where there are four actual players on the network you can use alter-
nate ways to get the data, as described in Section 12.3.

Each device seems to send status packets roughly every 200 milliseconds.
We are just beginning to analyze all the informationwhich can be gleaned from

these packets, but here is what we know so far.8

4.1 Mixer Status Packets
Packets from the mixer will have a length of 38 bytes and the content shown in
Figure 10.

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 2900

Device Name (padded with 00) 0110

00 𝐷 𝑙𝑒𝑛𝑟 𝐷 00 00 𝐹 𝑃𝑖𝑡𝑐ℎ 80 00 𝐵𝑃𝑀20

00 10 00 00 00 09 𝑀ℎ 𝐵𝑏30

Figure 10: Mixer status packets

Since these use packet subtype 00, the 𝑙𝑒𝑛𝑟 value reports there are 14 bytes
remaining after it.

Packets coming from a DJM-2000 nexus connected as the only mixer on the
network contain a value of 21 for their Device Number𝐷 (bytes 21 and 24).

It seems that rekordbox sometimes sends “mixer status” packets like this as well,
but with yet another packet subtype variant: it sends a value of 01 for byte 20, and
for packets with that subtype, the length at bytes 22–23 is a 𝑙𝑒𝑛𝑝 value, reporting

8Examples of packets discussed in this section can be found in the capture at https://github.com/
deep-symmetry/dysentery/raw/master/doc/assets/to-virtual.pcapng

https://github.com/deep-symmetry/dysentery/raw/master/doc/assets/to-virtual.pcapng
https://github.com/deep-symmetry/dysentery/raw/master/doc/assets/to-virtual.pcapng

4 CREATING A VIRTUAL CDJ 11

the length of the entire packet, rather than the number of bytes remaining in the
packet. The packets are otherwise identical.

The value marked 𝐹 at byte 27 is evidently a status flag equivalent to the one
shown in Figure 12, although on a mixer the only two values seen so far are f0
when it is the tempo master, and d0 when it is not. So evidently the mixer always
considers itself to be playing and synced, but never on-air.

There are twoplaces thatmight containpitch values, bytes28–2b andbytes30–
33, but since they always 100000 (or +0%), we can’t be sure. The first value is
structurally in the same place with respect to𝐵𝑃𝑀 as it is found in all other pack-
ets containing pitch information, so that is the one we are assuming is definitive. In
any case, since it is always +0%, the current tempo in beats-per-minute identified
by the mixer can be obtained as (only the byte offsets are hexadecimal):

𝑏𝑦𝑡𝑒[2e] × 256 + 𝑏𝑦𝑡𝑒[2f]
100

This value is labeled 𝐵𝑃𝑀 in Figure 10. Unfortunately, this BPM seems to
only be valid when a rekordbox-analyzed source is playing; when themixer is doing
its own beat detection from unanalyzed audio sources, even though it displays the
detected BPM on the mixer itself, and uses that to drive its beat effects, it does not
send that value in these packets.

The current beat number within a bar (1, 2, 3 or 4) is sent in 𝑏𝑦𝑡𝑒[37], labeled
𝐵𝑏. However, the beat number is not synchronized with the master player, and
these packets do not arrive at the same time as the beat started anyway, so this value
is not useful formuch. Thebeat number should be determined, whenneeded, from
beat packets (described in Section 3) that are sent by the master player.

The value at 𝑏𝑦𝑡𝑒[36], labeled 𝑀ℎ (master handoff), is used to hand off the
tempo master role. It starts out with the value 00 when there is no Master player,
but as soon as one appears it becomes ff. If the mixer has been the tempo master
and it is currently yielding this role to another player, this value will be the player
number that is becoming tempo master during that handoff, as described in Sec-
tion 5.

4.2 CDJ Status Packets
Packets from a CDJ will have a length of d4 bytes and the content shown in Fig-
ure 11 for nexus players. Older players sendd0-byte packets with slightly less infor-
mation. Newerfirmware andNexus2players sendpackets that are11cor124bytes
long.

These use yet another packet structure variant following the device name. As
always the byte after the namehas the value01, but the subtype valuewhich follows
that (at byte 20) has the value 03 here, rather than 00 as we saw in the mixer status
packets. Packets of subtype03 seem structurally equivalent to subtype00however:
the subtype indicator is followed by theDeviceNumber𝐷 at byte 21 and a length-
remaining value 𝑙𝑒𝑛𝑟 at bytes 22–23. If anyone can think of a reason why these
packets don’t simply reuse subtype 00, please share it!

4 CREATING A VIRTUAL CDJ 12

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 0a00

Device Name (padded with 00) 0110

03 𝐷 𝑙𝑒𝑛𝑟 𝐷 00 01 𝐴 𝐷𝑟 𝑆𝑟 𝑇𝑟 00 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥20

00 00 𝑇𝑟𝑎𝑐𝑘 00 00 00 𝑑𝑙 00 00 a0 00 00 00 00 0030

00 00 00 00 00 00 𝑑𝑛 00 00 00 00 00 00 00 0040

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0050

00 00 00 00 00 00 00 00 01 00 𝑈𝑎 𝑆𝑎 00 00 00 𝑈𝑙60

00 00 00 𝑆𝑙 00 𝐿 00 00 01 00 00 𝑃1 𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒70

00 00 00 00 𝑆𝑦𝑛𝑐𝑛 00 𝐹 ff 𝑃2 𝑃𝑖𝑡𝑐ℎ180

𝑀𝑣 𝐵𝑃𝑀 7f ff ff ff 𝑃𝑖𝑡𝑐ℎ2 00 𝑃3 𝑀𝑚 𝑀ℎ90

𝐵𝑒𝑎𝑡 𝐶𝑢𝑒 𝐵𝑏 00 00 00 00 00 00 00 00 00a0

00 00 00 00 00 00 10 00 00 00 00 00 00 00 00 00b0

𝑃𝑖𝑡𝑐ℎ3 𝑃𝑖𝑡𝑐ℎ4 𝑃𝑎𝑐𝑘𝑒𝑡 𝑛𝑥 00 00 00c0

00 00 00 00d0

Figure 11: CDJ status packets

4 CREATING A VIRTUAL CDJ 13

TheDevice Number in𝐷 (bytes 21 and 24) is the Player Number as displayed
on the CDJ itself. In the case of this capture, the value of 𝑙𝑒𝑛𝑟 was 00b0.

The activity flag 𝐴 at byte 27 seems to be 00 when the player is idle, and 01
when it is playing, searching, or loading a track.

When a track is loaded, the device fromwhich the track was loaded is reported
in𝐷𝑟 at byte 28 (if the track was loaded from the local device, this will be the same
as 𝐷; if it was loaded over the Link, it will be the number of a different device)
When no track is loaded,𝐷𝑟 has the value 00.

Similarly, 𝑆𝑟 at byte 29 reports the slot from which the track was loaded: The
value 00 means no track is loaded, 01 means the CD drive, 02 means the SD slot,
and 03 means the USB slot. When a track is loaded from a rekordbox collection
on a laptop, 𝑆𝑟 has the value 04. 𝑇𝑟 at byte 2a indicates the track type. It has the
value 00 when no track is loaded, 01 when a rekordbox track is loaded, 02 when
an unanalyzed track is loaded (from a media slot without a rekordbox database,
including from a data disc), and 05 when an audio CD track is loaded.

The field 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 at bytes 2c–2f contains the rekordbox database ID of
the loaded track when a rekordbox track is being played. When a non-rekordbox
media slot track is loaded, it is still a unique ID bywhich the track can be identified
for metadata requests, and when an audio CD track is loaded, this is just the track
number. In all cases, combined with the player number and slot information, this
can be used to request the track metadata as described in Section 6.

The track number being played (its position within a playlist or other scrolling
list of tracks, as displayed on the CDJ) can be found at bytes 32 and 33, labeled
𝑇𝑟𝑎𝑐𝑘. (It may be a 4-byte value and also include bytes 30 and 31, but that would
seem an unmanageable number of tracks to search through.)

Thefield𝑑𝑙 at byte37was given this label becausewefirst believed it to indicate
when a disc is loaded. It has the value 00 when the disc slot is empty, and seems
to have the value 1e when a CD Audio disc is loaded, and 11 when a data disc
containing files in MP3, AAC, WAV or AIFF format is loaded. However, we later
noticed that it also gets non-zero values when a track is loaded from a playlist (05)
or another playermenu (different values, depending on the type ofmenu; if anyone
would like to take the time to record all the different values and their meanings, a
pull request would be extremely welcome). Relatedly, when a track is loaded from
a disc, playlist, or menu, the field 𝑑𝑛 at bytes 46–47 changes from 0000 to the
number of tracks on the disc or in the playlist or menu (a data disc will generally
have one track).

Some of the fields shown as having value 00 in this region will sometimes have
other values in them; their meanings are simply not yet known. If you notice any
patterns or figure anything out please open a pull request and let us know!

Byte 6a, labeled𝑈𝑎 (for “USB activity”), alternates between the values 04 and
06 when there is USB activity—it may even alternate in time with the flashing
USB indicator LED on the player, although visual inspection suggests there is not
a perfect correlation. Byte 6b, 𝑆𝑎, is the same kind of activity indicator for the SD
slot. Byte 6f (𝑈𝑙 for “USB local”) has the value 04 when there is no USB media
loaded, 00 whenUSB is loaded, and 02 or 03 when theUSB Stop button has been

4 CREATING A VIRTUAL CDJ 14

01234567

1 Play Master Sync On-Air 1 0 0

Figure 12: CDJ state flag bits

pressed and the USB media is being unmounted.
Byte73 (𝑆𝑙 for “SD local”) has the value04when there is no SDmedia loaded,

00 when SD is loaded, and 02 or 03 when the SD door has been opened and the
SD media is being unmounted.

Byte75, labeled𝐿 (for “Link available”), appears tohave the value01whenever
USB, SD, or CDmedia is present in any player on the network, whether or not the
Link option is chosen in the other players, and 00 otherwise.

Byte 7b, labeled𝑃1, appears to describe the current playmode. The values seen
so far, and their apparent meanings, are shown in Table 1.

Value Meaning
00 No track is loaded
02 A track is in the process of loading
03 Player is playing normally
04 Player is playing a loop
05 Player is paused anywhere other than the cue point
06 Player is paused at the cue point
07 Cue Play is in progress (playback while the cue button is held down)
08 Cue scratch is in progress
09 Player is searching forwards or backwards
0e Audio CD has spun down due to lack of use
11 Player reached the end of the track and stopped

Table 1: Known 𝑃1 Values

The𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒 value at bytes7c–7f is anASCII represenationof thefirmware
version running in the player.

The value𝑆𝑦𝑛𝑐𝑛 at bytes 84–87 changes whenever a player gives up being the
tempomaster; at that point it gets set to a value one higher than the highest𝑆𝑦𝑛𝑐𝑛
value reported by any other player on the network. This is part of the Baroque
master handoff dance described in Section 5.3.

Byte 89, labeled𝐹 , is a bit field containing some very useful state flags, detailed
in Figure 12.9 It seems to only be available on nexus players, and others always send
00 for this byte?

9We have not yet seen any other values for bits 0, 1, 2, or 7 in𝐹 , so we’re unsure if they also carry mean-
ing. If you ever find different values for them, please let us know by filing an Issue at https://github.
com/deep-symmetry/dysentery/issues

https://github.com/deep-symmetry/dysentery/issues
https://github.com/deep-symmetry/dysentery/issues

4 CREATING A VIRTUAL CDJ 15

Byte 8b, labeled 𝑃2 seems to be another play state indicator, having the value
7a when playing and 7e when stopped. When the CDJ is trying to play, but is
being held in place by the DJ holding down on the jog wheel, 𝑃1 considers it to
be playing (value 03), while 𝑃2 considers it to be stopped (value 7e). Non-nexus
players seem to use the value 6a when playing and 6e when stopped, while nxs2
players use the values fa and fe, and theXDJ-XZ uses the values 9a and 9e so this
seems to be another bit field like 𝐹 .

There are four different places where pitch information appears in these pack-
ets: 𝑃𝑖𝑡𝑐ℎ1 at bytes 8c–8f,𝑃𝑖𝑡𝑐ℎ2 at bytes 98–9b,𝑃𝑖𝑡𝑐ℎ3 at bytes c0–c3, and
𝑃𝑖𝑡𝑐ℎ4 at bytes c4–c7.

Each of these values represents a four-byte pitch adjustment percentage, where
00100000 represents no adjustment (0%), 00000000 represents slowing all the
way to a complete stop (−100%, reachable only inWide tempomode), and00200000
represents playing at double speed (+100%).

Note that if playback is stoppedbypushing thepitch fader all theway to−100%
inWidemode, both𝑃1 and𝑃2 still show it as playing, which is different thanwhen
the jog wheel is held down, since 𝑃2 shows a stop in the latter situation.

The pitch adjustment percentage represented by 𝑃𝑖𝑡𝑐ℎ1 would be calculated
by multiplying decimal 100 by the following hexadecimal equation:

(𝑏𝑦𝑡𝑒[8d] × 10000 + 𝑏𝑦𝑡𝑒[8e] × 100 + 𝑏𝑦𝑡𝑒[8f]) − 100000
100000

We don’t know why there are so many copies of the pitch information, or all
circumstances under which they might differ from each other, but it seems that
𝑃𝑖𝑡𝑐ℎ1 and 𝑃𝑖𝑡𝑐ℎ3 report the current pitch adjustment actually in effect (as re-
flected on the BPM display), whether it is due to the local pitch fader, or a synced
tempo master.

𝑃𝑖𝑡𝑐ℎ2 and 𝑃𝑖𝑡𝑐ℎ4 are always tied to the position of the local pitch fader,
unless Tempo Reset is active, effectively locking the pitch fader to 0% and 𝑃𝑖𝑡𝑐ℎ2
and𝑃𝑖𝑡𝑐ℎ4 to100000, or the player is paused or the jogwheel is being held down,
freezing playback and locking the local pitch to −100%, in which case they both
have the value 000000.

When playback stops, either due to the play button being pressed or the jog
wheel held down, the value of 𝑃𝑖𝑡𝑐ℎ4 drops to 000000 instantly, while the value
of 𝑃𝑖𝑡𝑐ℎ2 drops over time, reflecting the gradual slowdown of playback which is
controlled by the player’s brake speed setting. When playback starts, again either
due to the play button being pressed or the jog wheel being released, both 𝑃𝑖𝑡𝑐ℎ2
and 𝑃𝑖𝑡𝑐ℎ4 gradually rise to the target pitch, at a speed controlled by the player’s
release speed setting.

If the player is not synced, but the current pitch is different thanwhat the pitch
fader would indicate (in other words, the player is in themode where it tells you to
move the pitch fader to the current BPM in order to change the pitch), moving the
pitch fader changes the values of𝑃𝑖𝑡𝑐ℎ2 and𝑃𝑖𝑡𝑐ℎ4 until theymatch𝑃𝑖𝑡𝑐ℎ1 and
𝑃𝑖𝑡𝑐ℎ3 and begin to affect the actual effective pitch. From that point on, moving

4 CREATING A VIRTUAL CDJ 16

the pitch fader sets the value of all of𝑃𝑖𝑡𝑐ℎ1,𝑃𝑖𝑡𝑐ℎ2,𝑃𝑖𝑡𝑐ℎ3, and𝑃𝑖𝑡𝑐ℎ4. This
all seems more complicated than it really needs to be...

The current BPM of the track (the BPM at the point that is currently being
played, or at the location where the player is currently paused) can be found at
bytes 92–93 (labeled 𝐵𝑃𝑀). It is a two-byte integer representing one hundred
times the current trackBPM.So, the current trackBPMvalue to twodecimal places
can be calculated as (only byte offsets are hexadecimal):

𝑏𝑦𝑡𝑒[92] × 256 + 𝑏𝑦𝑡𝑒[93]
100

In order to obtain the actual playing BPM (the value shown in the BPM dis-
play), this value must be multiplied by the current effective pitch, calculated from
𝑃𝑖𝑡𝑐ℎ1 as described above. Since calculating the effective BPM reported by aCDJ
is a common operation, here a simplified hexadecimal equation that results in the
effective BPM to two decimal places, by combinining the𝐵𝑃𝑀 and 𝑃𝑖𝑡𝑐ℎ1 val-
ues:

(𝑏[92] × 100 + 𝑏[93]) × (𝑏[8d] × 10000 + 𝑏[8e] × 100 + 𝑏[8f])
100000

Because Rekordbox and theCDJs support tracks with variable BPM, this value
can and does change over the course of playing such tracks. When no track is
loaded,𝐵𝑃𝑀 has the value ffff.

𝑀𝑣 (bytes90–91) seems to controlwhether the𝐵𝑃𝑀 value is acceptedwhen
this player is themaster. It has the value7fffwhenno track is loaded,8000when a
rekordbox track is loaded, and0000when anon-rekordbox track (like fromaphys-
ical CD) is loaded, and only when the value is 8000 are tempos from this player
accepted when it is acting as master (otherwise the mixer shows the master to have
a tempo of “- - -.-” and other players do not respond to its tempo changes).

Byte 9d (labeled𝑃3) seems to communicate additional information about the
current play mode. The meanings that we have found so far are listed in Table 2.

Value Meaning
00 No track is loaded
01 Player is paused or playing in Reverse mode
09 Player is playing in Forward mode with jog mode set to Vinyl
0d Player is playing in Forward mode with jog mode set to CDJ

Table 2: Known 𝑃3 Values

Byte 9e (labeled 𝑀𝑚) is another representation of whether this player is cur-
rently the tempomaster (in addition to bit 5 of𝐹 , as shown inFigure 12). It has the
value 00 when the player is not the master, the value 01 when it is tempo master
and is playing a rekordbox-analyzed track, so that actually has a meaningful effect,

4 CREATING A VIRTUAL CDJ 17

and the value 02 when it is supposed to be themaster (and the value of𝐹 still indi-
cates that it is), but it is playing a non-rekordbox track, so it is unable to send tempo
and beat information to other players.

The following byte, 9f (labeled𝑀ℎ), is related. As described in Section 5, this
normally has the value ff. But when this player is giving up the role of tempomas-
ter in response to a request from another player thatwants to take over, it holds that
player’s device number until it sees that device announce itself as the new master,
at which point it turns off its own master flags, and this value goes back to ff.

The 4-byte beat counter (which counts each beat from 1 through the end of
the track) is found in bytes a0–a3, labeled𝐵𝑒𝑎𝑡. When the player is paused at the
start of the track, this seems to hold the value 0, even though it is beat 1, and when
no rekordbox-analyzed track is loaded, and in packets from non-nexus players, this
holds the value ffffffff.

The counter 𝐵𝑏 at byte a6 counts out the beat within each bar, cycling 1 →
2 → 3 → 4 repeatedly, and can be used to identify the down beat (as is used in the
Master Player display on the CDJs as a mixing aid). Again, when no reckordbox-
analyzed track is loaded, this holds the value 0. If you want to synchronize events
to the down beat, use the CDJ status packets’𝐹 value to identify themaster player,
but use the beat packets sent by that player (described in Section 3) to determine
when the beats are actually happening.

A countdown timer to the next saved cue point is available in bytes a4–a5
(labeled 𝐶𝑢𝑒). If there is no saved cue point after the current play location in the
track, or if it is further than 64 bars ahead, these bytes contain the value 01ff and
the CDJ displays “- -.- bars”. As soon as there are just 64 bars (256 beats) to go
before the next cue point, this value becomes 0100. This is the point at which the
CDJ starts to display a countdown, which it displays as “63.4 bars”. As each beat
goes by, this value decreases by 1, until the cue point is about to be reached, atwhich
point the value is 0001 and the CDJ displays “00.1 bars”. On the beat on which
the cue point was saved the value is 0000 and the CDJ displays “00.0 Bars”. On
the next beat, the value becomes determined by the next cue point (if any) in the
track.

Bytes c8-cb seem to contain a 4-byte packet counter labeled 𝑃𝑎𝑐𝑘𝑒𝑡, which
is incremented for each packet sent by the player. (I am just guessing it is four bytes
long, I have not yet watched long enough for the count to need more than the last
three bytes).

Byte cc, labeled 𝑛𝑥, seems to have the value 0f for nexus players, 1f for the
XDJ-XZ, and 05 for older players.

4.3 Rekordbox Status Packets
Rekordbox sends status packets which appear to be essentially identical to those
sent by amixer, as shown in Figure 10, sending “rekordbox” as its device name. The
device number 𝐷 (bytes 21 and 24) seems to be 29, although it will probably use
conflict resolution to pick an unused number if multiple copies are running. The
𝐹 value we have seen remains consistent as a status flag, showing c0 which would

5 SYNC AND TEMPO MASTER 18

indicate that it is always “playing” but not synced, tempo master, nor on the air.
The 𝐵𝑃𝑀 value seems to track that of the master player, and the same potential
pitch values (fixed at 100000, or +0%) are present, as is𝑋. 𝐵𝑏 always seems to be
zero.

5 Sync and Tempo Master
TheDJMhas amode for its touchscreenwhich allows you to see and control which
players are synced and which is the tempo master, and of course individual players
can take over being master as well. This section describes the packets used to im-
plement these features.

5.1 Sync Control
To tell a player to turn Sync mode on or off, send a packet like the one shown in
Figure 13 to port 50001 of the target device, with the player number that you are
pretending to be as the value of 𝐷, and set the value of 𝑆 to 0x10 if you want the
player to turn on Sync, and 0x20 if you want it to leave Sync mode.

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 2a00

Device Name (padded with 00) 0110

00 𝐷 𝑙𝑒𝑛𝑟 00 00 00 𝐷 00 00 00 𝑆20

Figure 13: Sync control packet

5.2 Tempo Master Assignment
To tell a player to become tempomaster, the same type of packet shown inFigure 13
is used, with a value of 01 for𝑆. This will cause the player to behave as if theDJ had
pressed its Master button, following the steps described in the next section. This
packet can be sent to a CDJ or DJM mixer. Since this packet uses subtype 00, the
length sent in 𝑙𝑒𝑛𝑟 has the value 0008, reflecting the eight bytes which follow it.

5.3 Tempo Master Handoff
When a player or mixer is to become tempo master, regardless of whether this was
initiated by pressing its Master button or by receipt of the packet described in the
preceding section, the same process is followed.

If there is currently no tempo master, the device simply becomes master, and
starts sending status packets with appropriate values of 𝐹 and 𝑀𝑚 (mixer status
packets only have 𝐹 in them).

5 SYNC AND TEMPO MASTER 19

If another player is currently tempo master, however, a coordinated handoff
takes place. The device that wants to become tempo master first sends a takeover
request packet like the one shown in Figure 14 to port 50001 of the current tempo
master, with the player number of the devicewanting to becomemaster as the value
of𝐷.

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 2600

Device Name (padded with 00) 0110

00 𝐷 𝑙𝑒𝑛𝑟 00 00 00 𝐷20

Figure 14: Tempo master takeover request packet

Since this packet uses subtype 00, the length sent in 𝑙𝑒𝑛𝑟 has the value 0004,
reflecting the four bytes which follow it.

The current tempomaster will agree to the handoff by sending a packet like the
one shown in Figure 15 to port 50001 of the device that sent the takeover request,
with the its own device number as the value of𝐷.

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 2700

Device Name (padded with 00) 0110

00 𝐷 𝑙𝑒𝑛𝑟 00 00 00 𝐷 00 00 00 0120

Figure 15: Tempo master takeover response packet

Since this packet uses subtype 00, the length sent in 𝑙𝑒𝑛𝑟 has the value 0008,
reflecting the eight bytes which follow it.

Once that is done, the outgoingmaster will continue to report itself as themas-
ter according to its status packets (bit 5 of 𝐹 , and for CDJs, the value of𝑀𝑚) but
it will announce to the world that the handoff is taking place by sending the device
number of the device that is about to become tempo master as the value of 𝑀ℎ.
(See Figures 10 and 11 for the locations of these bytes.)

As soon as the device becoming tempo master sees its device number in𝑀ℎ in
the status packets from the outgoing tempo master, it starts reporting itself as the
tempo master using 𝐹 and, for CDJs,𝑀𝑚 in its own status packets.

And as soon as the outgoing tempomaster sees the newmaster has asserted this
role in its status packets, it stops reporting itself as tempo master in its own status
packets, goes back to sending the value ff in 𝑀ℎ, and sets its 𝑆𝑦𝑛𝑐𝑛 value to be
one greater than the𝑆𝑦𝑛𝑐𝑛 value reported by any other player on the network (al-
thoughmixers do not report this value at all). This concludes the (rather Baroque)
handoff.

6 TRACK METADATA 20

0 1 2 3 4 5 6 7 8 9 a b c d e f

00 00 00 0f R e m o t e D B S e r v00

e r 0010

Figure 16: DB Server query packet

5.4 Unsolicited Handoff
While working on synchronizing Pro DJ Link devices with Ableton Link, I acci-
dentally discovered that there is another way the tempo master role can be handed
off. If the device that is currently tempomaster is stopped (not playing a track), and
it sees another device that is both synced and playing, it will set 𝑀ℎ to the device
number of synced, playing device, telling it to become the new master. As soon
as the device named by 𝑀ℎ sees that status packet, it should take over the role as
described in the second-to-last paragraph of Section 5.3 above, even though it did
not start the process.

6 Track Metadata
Thanks to@EvanPurkhiser10, wefinally startedmakingprogress in retrievingmeta-
data from CDJs, and now some shared code from Austin Wright11 is boosting our
understanding considerably!

To be polite about it, the first step is to determine the port on which the player
is offering its remote database server. That can be determined by opening a TCP
connection to port 12, 523 on the player and sending it sending a packet with the
content shown in Figure 16.

The player will send back a two-byte response, containing the high byte of the
port number followed by the low byte. So far, the response from a CDJ has always
indicated a port number of 1051, but using this query to determine the port to use
will protect you against any future changes. The same query can also be sent to a
laptop running rekordbox to find the rekordbox database server port, which can
also be queried for metadata in the exact same way described below.

To find the metadata associated with a particular track, given its rekordbox ID
number, as well as the player and slot from which it was loaded (all of which can
be determined from a CDJ status packet received by a virtual CDJ as described in
Section 4), open a TCP connection to the device fromwhich the track was loaded,
using the port that it gave you in response to theDBServer query packet, then send
the following four packets. (You can also get metadata for non-rekordbox tracks,
even forCDAudio tracks beingplayed in theCDslot, using the variationdescribed
in Section 6.6.)

10https://github.com/EvanPurkhiser
11https://bitbucket.org/awwright/libpdjl

https://github.com/EvanPurkhiser
https://bitbucket.org/awwright/libpdjl

6 TRACK METADATA 21

0 1

0f 𝑛
0 1 2

10 𝑛
0 1 2 3 4

11 𝑛

Figure 17: Number Fields of length 1, 2, and 4

The first packet sent to the database server contains the five bytes 11 00 00
00 01, and results in the same five bytes being sent back.

All further packets have a shared structure. They consist of lists of type-tagged
fields (a type byte, followed some number of value bytes, although in the case of
the variable-size types, the first four bytes are a big-endian integer that specifies the
length of the additional value bytes that make up the field). So far, there are four
known field types, and it turns out that the packet we just saw is one of them, it
represents the number 1 as a 4-byte integer.

6.1 Field Types
The first byte of a field identifies what type of field is coming. The values 0f, 10,
and 11 are followed by 1, 2, and 4 byte fixed-length integer fields, while 14 and
26 introduce variable-length fields, a binary blob and a UTF-16 big-endian string
respectively.

6.1.1 Number Fields

Number fields are indicated by an initial byte 0f, 10, or 11 which is followed by
big-endian integer value of length 1, 2, or 4 bytes respectively, as shown in Fig-
ure 17. So, as noted above, the initial greeting packet sent to and received back
from the database server is a number field, four bytes long, representing the value
1.

6.1.2 Binary Fields

Variable-length binary (blob) fields are indicated by an initial byte 14, followed
by a 4 byte big-endian integer which specifies the length of the field payload. The
length is followed by the specified number of bytes (for example, an album art im-
age, waveform or beat grid). This is illustrated in Figure 18.

6 TRACK METADATA 22

0 1 2 3 4 5 6 7 8 9 a b c d e f

14 𝑙𝑒𝑛𝑔𝑡ℎ Binary data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 18: Binary (Blob) Field

0 1 2 3 4 5 6 7 8 9 a b c d e f

26 𝑙𝑒𝑛𝑔𝑡ℎ UTF-16BE string
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 19: String Field

6.1.3 String Fields

Variable-length string fields are indicated by an initial byte 26, followed by a 4 byte
big-endian integer which specifies the length of the string, in two-byte UTF-16
big-endian characters. So the length is folowed by 2×𝑙𝑒𝑛𝑔𝑡ℎ bytes containing the
actual string characters. The last character of the string is always NUL, represented
by 0000. This is illustrated in Figure 19.

6.2 Messages
Messages are introduced by a 4 byte Number field containing a “magic“ value (it is
always 872349ae). This is followed by another 4 byte number field that contains
a transaction ID, which starts at 1 and is incremented for each query sent, and all
messages sent in response to that query will contain the same transaction ID. This
is followed by a 2 byte number field containing the message type, a 1 byte number
field containing the number of argument fields present in the message, and a blob
field containing a series of bytes which identify the types of each argument field.
This blob is always twelve bytes long, regardless of how few arguments there are
(and presumably this means no message ever has more than twelve arguments).

6 TRACK METADATA 23

0 1 2 3 4 5 6 7 8 9 a b c d e f

11 872349ae 11 𝑇𝑥𝐼𝐷 10 𝑡𝑦𝑝𝑒 0f 𝑛 1400

0000000c (12) 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡1210

Arguments
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 20: Message Header

Tag bytes past the actual argument count of the message are set to 0.
The argument type tags use different values than the field type tags themselves,

for some reason, and it is not clear why this redundant information is necessary at
all, but that is true a number of places in the protocol as you will see later. Table 3
lists the known tag values and their meanings.

I am guessing that if we ever see them, a tag of 04 would represent a 1 byte
integer, and 05 would represent a 2 byte integer. But so far no such messages have
been seen.

This header is followedby the fields thatmake up themessage arguments, if any.
The header structure is illustrated in Figure 20, where𝑇𝑥𝐼𝐷 is the transaction ID,
𝑛 is the number of arguments found in themessage, and 𝑡1 through 𝑡12 are the type
tags for each argument, or 00 if there is no argument in that position.

Before you can send your first actual query, you need to send a special message
which seems to be necessary for establishing the context for queries. It has a 𝑡𝑦𝑝𝑒
of 0000, a special 𝑇𝑥𝐼𝐷 value of fffffffe, and a single numeric argument, as
shown in Figure 21.

Tag Meaning
02 Astring inUTF-16big-endian encoding, with trailingNUL(zero) char-

acter
03 A binary blob
06 A 4 byte big-endian integer

Table 3: Argument Tag Values

Thevalue𝐷 is, like in the other packetswehave seen, a player device number. In
this case it is the device that is asking for metadata information. It must be a valid
player number between 1 and 4, and that player must actually be present on the

6 TRACK METADATA 24

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 fffffffe 10 0000 0f 01 1400

0000000c (12) 06 00 00 00 00 00 00 00 00 00 00 0010

11 𝐷𝑜𝑢𝑟𝑠20

Figure 21: Query context setup message

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 fffffffe 10 4000 0f 02 1400

0000000c (12) 06 06 00 00 00 00 00 00 00 00 00 0010

11 00000000 11 𝐷𝑡ℎ𝑒𝑖𝑟𝑠20

Figure 22: Query context setup response

network, must not be the same player that you are contacting to request metadata
from, andmustnot be a player that has connected to that player viaLink and loaded
a track from it. So the safest device number touse is thedevicenumber you are using
for your virtual CDJ, but since it must be between 1 and 4, you can only do that if
there are fewer than four actual CDJs on the network.

The player will respond with a message of type 4000, which is the common
“success” response when requested data is available. The response message has two
numeric arguments, the first of which is the message type of the request we sent
(which was 0000), and the second usually tells you the number of items that are
available in response to the query you made, but in this special setup query, it re-
turns its own player number. The overall structure is illustrated in Figure 22.

6.3 Rekordbox Track Metadata
To ask for metadata about a particular rekordbox track, send a packet like the one
shown in Figure 23.

As described above, 𝑇𝑥𝐼𝐷 should be 1 for the first query packet you send, 2
for the next, and so on. 𝐷 should have the same value you used in your initial query
context setup packet, identifying the device that is asking the question. 𝑆𝑟 is the
slot in which the track being asked about can be found, and has the same values
used in CDJ status packets, as shown in Figure 11. Similarly, 𝑇𝑟 identifies the type
of track we want information about; for rekordbox tracks this always has the value
01. And 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 identifies the local rekordbox database ID of the track being
asked about, as found in the CDJ status packet.

6 TRACK METADATA 25

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 2002 0f 02 1400

0000000c (12) 06 06 00 00 00 00 00 00 00 00 00 0010

11 𝐷 01 𝑆𝑟 𝑇𝑟 11 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥20

Figure 23: Rekordbox track metadata request message

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4000 0f 02 1400

0000000c (12) 06 06 00 00 00 00 00 00 00 00 00 0010

11 00002002 11 0000000b20

Figure 24: Track metadata available response

Track metadata requests are built on the mechanism that is used to request
and draw scrollable menus on the CDJs, so the request is essentially interpreted
as setting up to draw the “menu” of information that is known about the track.
The player responds with a success indicator, saying it is ready to send these “menu
items” and reporting how many of them are available, as shown in Figure 24.

We’ve seen this type of “data available” response already in Figure 22, but this
one is a more typical example. As usual, 𝑇𝑥𝐼𝐷 matches the value we sent in our
request, and the first argument, with value 2002, reflects the 𝑡𝑦𝑝𝑒 field of our re-
quest. The second argument reports that there are 11 (0b) entries of trackmetadata
available to be retrieved for the track we asked about, and that the player is ready
to send them to us.

If there was no track with ID 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 in that media slot, the second argu-
ment would have the value ffffffff to let us know. If we messed up something
else about the request, we will get a response with a 𝑡𝑦𝑝𝑒 other than 4000. See
Section 6.16 for instructions on how to explore these variations on your own.

But assuming everythingwentwell, we can get the player to send us all eleven of
thosemetadata entries by telling it to render all of the currentmenu, using a “render
menu” request with 𝑡𝑦𝑝𝑒 3000 shown in Figure 25.

As always, the value of 𝑇𝑥𝐼𝐷 should be one higher than the one you sent in
your setup packet, while the values of 𝐷 and 𝑆𝑟 should be identical to what you
sent in it.

The request has six numeric arguments. At this point it is worth talking a bit
more about the byte after𝐷 in thefirst argument. This seems to specify the location

6 TRACK METADATA 26

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 3000 0f 06 1400

0000000c (12) 06 06 06 06 06 06 00 00 00 00 00 0010

11 𝐷 01 𝑆𝑟 𝑇𝑟 11 𝑜𝑓𝑓𝑠𝑒𝑡 11 𝑙𝑖𝑚𝑖𝑡 1120

00000000 11 𝑡𝑜𝑡𝑎𝑙 11 0000000030

Figure 25: Render Menu request message

of themenubeing drawn, with the value 1meaning themainmenuon the left-hand
half of the CDJ display, while 2 means the submenu (for example the info popup
when it is open) which overlays the right-hand half of the display. We don’t yet
know exactly what, if any, difference there is between the response details when 2 is
used instead of 1 here. And special data requests use different values: for example,
the track waveform summary, which is drawn in a strip along the entire bottom of
the display, is requested with a menu location number of 8 in this second byte.

As described above, 𝑇𝑟 has the value 1 for rekordbox tracks.
The second argument, 𝑜𝑓𝑓𝑠𝑒𝑡, specifies which menu entry is the first one you

want to see, and the third argument, 𝑙𝑖𝑚𝑖𝑡, specifies how many should be sent. In
this case, since there are only 11 entries, we can request them all at once, so we will
set 𝑜𝑓𝑓𝑠𝑒𝑡 to 0 and 𝑙𝑖𝑚𝑖𝑡 to 11. But for large playlists, for example, you need
to request batches of entries that are smaller than the total available, or the player
will be unable to send them to you. We have not found what the exact limit is, but
getting 64 at a time seems to work on Nexus 2 players.

We don’t know the purpose of the fourth argument, but sending a value of 0
works. The fifth argument, 𝑡𝑜𝑡𝑎𝑙, seems to usually contain the total number of
items reported in the intial menu response, but sending a second copy of 𝑙𝑖𝑚𝑖𝑡
here works too; it may notmattermuch. And the sixth and final argument also has
an unknown purpose, but 0 works.

So, for our metadata request, the packet we want to send in order to get all the
metadata will have the specific values shown in Figure 26:

This causes the player to send us 13 messages: The 11 metadata items we re-
quested are sent (with 𝑡𝑦𝑝𝑒 4101, Figure 28), but they are preceded by a menu
header message (with 𝑡𝑦𝑝𝑒 4001, Figure 27), and followed by a menu footer mes-
sage (with 𝑡𝑦𝑝𝑒 4201, Figure 29). This wrapping happens with all “render menu”
requests, and the menu footer is an easy way to know you are done, although you
can also count the messages.

Themenu item responses all have the same structure, and use all twelvemessage
argument slots, containing ten numbers and two strings, although they generally
don’t have meaningful values in all of the slots. They have the general structure
shown in in Figure 28, and the arguments are listed in Table 4.

6 TRACK METADATA 27

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 3000 0f 06 1400

0000000c (12) 06 06 06 06 06 06 00 00 00 00 00 0010

11 𝐷 01 𝑆𝑟 𝑇𝑟 11 00000000 11 0000000b 1120

00000000 11 0000000b 11 0000000030

Figure 26: Render track metadata request message

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4001 0f 02 1400

0000000c (12) 06 06 00 00 00 00 00 00 00 00 00 0010

11 00000001 11 0000000020

Figure 27: Menu header response

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4101 0f 0c 1400

0000000c (12) 06 06 06 02 06 02 06 06 06 06 06 0610

Arguments
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 28: Menu item response

6 TRACK METADATA 28

Arg Type Meaning
1 number parent ID, such as an artist for a track item
2 number main ID, such as 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 for a track item
3 number length in bytes of Label 1
4 string Label 1 (main text, such as the track title or artist name, as

appropriate for the item type)
5 number length in bytes of Label 2
6 string Label 2 (secondary text, e.g. artist name for playlist entries,

where Label 1 holds the title)
7 number type of this item (see Section 6.5)
8 number some sort of flags field, details still unclear
9 number holds 𝑎𝑟𝑡𝑤𝑜𝑟𝑘 ID when type is Track Title

10 number playlist position when relevant, e.g. when listing a playlist
11 number unknown
12 number unknown

Table 4: Menu Item Arguments

6.3.1 Track Metadata Item 1: Title

The first item returned after the menu header is the track title, so argument 7 has
the value 04. Argument 1, which may always be some kind of parent ID, holds the
artist ID associated with the track. The second argument seems to always be the
main ID, and for this response it holds the 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 ID of the track. Argument
4 holds the track title text, and argument 9 holds the album 𝑎𝑟𝑡𝑤𝑜𝑟𝑘 ID if any is
available for the track. This ID can be used to retrieve the actual album art image
as described in Section 6.7.

6.3.2 Track Metadata Item 2: Artist

The second item contains artist information so argument 7 has the value 07. Ar-
gument 2 holds the artist ID, argument 4 contains the text of the artist name.

6.3.3 Track Metadata Item 3: Album Title

The third item contains album title information so argument 7 has the value 02.
Argument 4 contains the text of the album name.

6.3.4 Track Metadata Item 4: Duration

The fourth item contains track duration information so argument 7 has the value
0b. Argument 2 contains the length, in seconds, of the trackwhenplayed at normal
tempo.

6 TRACK METADATA 29

6.3.5 Track Metadata Item 5: Tempo

The fifth item contains tempo information so argument 7 has the value 0d. Ar-
gument 2 contains the track’s starting tempo, in BPM, times 100, as reported in
𝐵𝑃𝑀 values in other packets described earlier.

6.3.6 Track Metadata Item 6: Comment

The sixth item contains comment information so argument 7 has the value 23. Ar-
gument 4 contains the text of the track comment entered by the DJ in rekordbox.

6.3.7 Track Metadata Item 7: Key

The seventh item contains key information so argument 7 has the value 0f. Argu-
ment 4 contains the text of the track’s dominant key signature.

6.3.8 Track Metadata Item 8: Rating

The eighth item contains rating information so argument 7 has the value 0a. Ar-
gument 2 contains a value from 0 to 5 corresponding to the number of stars theDJ
has assigned the track in rekordbox.

6.3.9 Track Metadata Item 9: Color

The ninth item contains color information so argument 7 has a value between 13
and 1b identifying the color, if any, assigned to the track (see Section 6.5 for the
color choices), and if the value is anything other than 13, Argument 4 contains the
text that the DJ has assigned for that color meaning in rekordbox.

6.3.10 Track Metadata Item 10: Genre

The tenth item contains genre information so argument 7 has the value 06. Ar-
gument 2 contains the numeric genre ID, and argument 4 contains the text of the
genre name.

6.3.11 Track Metadata Item 11: Date Added

Theeleventh and final item contains the date added information so argument 7 has
the value 2e. Argument 4 contains the date the track was added to the collection
in the format “yyyy-mm-dd”. This information seems to propagate into rekordbox
from iTunes.

6.4 Menu Footer Response
The menu footer message has a 𝑡𝑦𝑝𝑒 of 4201 and no arguments, so it has a header
only, and is always made up of the exact same sequence of bytes (apart from the
𝑇𝑥𝐼𝐷), as shown in Figure 29.

6 TRACK METADATA 30

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4201 0f 00 1400

0000000c (12) 00 00 00 00 00 00 00 00 00 00 00 0010

Figure 29: Menu footer response

6.5 Menu Item Types
As noted above, the seventh argument in a menu item response identifies the type
of the item. The meanings we have identified so far are listed in Table 5.

Type Meaning
0001 Folder (such as in the playlists menu)12
0002 Album title
0003 Disc
0004 Track Title
0006 Genre
0007 Artist
0008 Playlist
000a Rating
000b Duration (in seconds)
000d Tempo
000e Label
000f Key
0010 Bit Rate
0011 Year
0013 Color None
0014 Color Pink
0015 Color Red
0016 Color Orange
0017 Color Yellow
0018 Color Green
0019 Color Aqua
001a Color Blue
001b Color Purple
0023 Comment
0024 History Playlist
0028 Original Artist
0029 Remixer

Table 5: Known Menu Item Types

6 TRACK METADATA 31

Type Meaning
002e Date Added
0080 Genre menu
0081 Artist menu
0082 Album menu
0083 Track menu
0084 Playlist menu
0085 BPM menu
0086 Rating menu
0087 Year menu
0088 Remixer menu
0089 Label menu
008a Original Artist menu
008b Key menu
008e Color menu
0090 Folder menu
0091 Search “menu”
0092 Time menu
0093 Bitrate menu
0094 Filename menu
0095 History menu
00a0 All
0204 Track title and album
0604 Track Title and Genre
0704 Track Title and Artist
0a04 Track Title and Rating
0b04 Track Title and Time
0d04 Track Title and BPM
0e04 Track Title and Label
0f04 Track Title and Key
1004 Track Title and Bit Rate
1a04 Track Title and Color
2304 Track Title and Comment
2804 Track Title and Original Artist
2904 Track Title and Remixer
2a04 Track Title and DJ Play Count
2e04 Track Title and Date Added

Table 5: Known Menu Item Types

As noted above, track metadata responses use many of these types. Others are
used in different kinds of menus and queries.

12A nested list of playlists rather than an individual playlist.

6 TRACK METADATA 32

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 2003 0f 02 1400

0000000c (12) 06 06 00 00 00 00 00 00 00 00 00 0010

11 𝐷 08 𝑆𝑟 𝑇𝑟 11 𝑎𝑟𝑡𝑤𝑜𝑟𝑘20

Figure 30: Track artwork request message

6.6 Non-Rekordbox Track Metadata
Asnoted in the introduction to this section, you cangetmetadata fornon-rekordbox
tracks as well (although they don’t have beat grids, waveforms, or album art avail-
able). All you need to do is use a slight variant of the metadata request message
shown in Figure 23, using the value 2202 (instead of 2002) for the message type,
and a value of 𝑇𝑟 that is appropriate for the kind of track you are asking about (02
for non-rekordbox tracks loaded from media slots, and 05 for CD audio tracks
playing in the CD slot, which has a 𝑆𝑟 value of 01). After the initial query setup
message, the other message types are the same as in the above discussion, but you
will continue using the 𝑆𝑟 and 𝑇𝑟 values appropriate for the slot and media type
you are asking about.

Since these tracks don’t have rekordbox IDs, youwill need touse the𝑟𝑒𝑐𝑜𝑟𝑑𝑏𝑜𝑥
value reported in CDJ status packets in order to find out the values used to request
the metadata for tracks loaded from solid state media; CD tracks are requested us-
ing the simple track number as the 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 value.

 It seems that to reliably get data back when requesting metadata
for non-rekordbox tracks, your virtual CDJ needs to be sending
properly-formatted status packets, not just device announcement
packets.

6.7 Album Art
To request the artwork image associated with a track, send a message with 𝑡𝑦𝑝𝑒
2003 containing the 𝑎𝑟𝑡𝑤𝑜𝑟𝑘 ID that was specified in the track title item (as de-
scribed in Section 6.3.1), like the one shown in Figure 30.

As usual, 𝑠𝑒𝑞 should be incremented each time you send a query, and will be
used to identify the response messages. 𝐷 should have the same value you used
in your initial query context setup packet, identifying the device that is asking the
question. 𝑆𝑟 and𝑇𝑟 are the slot in which the track being asked about can be found
and, its track type; each has the same values used inCDJ status packets, as shown in

6 TRACK METADATA 33

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4002 0f 04 1400

0000000c (12) 06 06 06 03 00 00 00 00 00 00 00 0010

11 00002003 11 00000000 11 𝑙𝑒𝑛𝑔𝑡ℎ 1420

𝑙𝑒𝑛𝑔𝑡ℎ Image bytes
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 31: Track artwork response message

Figure 11. Finally, 𝑎𝑟𝑡𝑤𝑜𝑟𝑘 identifies the specific artwork image you are request-
ing, as it was specified in the track medatata response. As with other graphical re-
quests, the value after𝐷, which identifies the location of the menu for which data
is being loaded, is 8.

The response will be a message with 𝑡𝑦𝑝𝑒 4002, containing four arguments.
The first argument echoes back our request type, which was 2003. The second al-
ways seems to be 0. The third contains the length of the image in bytes, which seems
redundant, because that is also conveyed in the fourth argument itself, which is a
blob containing the actual bytes of the image data, as shown inFigure 31. However,
if there is no image data, this value will be 0, and the blob field will be completely
omitted from the response, so you must not try to read it!

To experiment with this, start up dysentery in a Clojure REPL and connect to
a player as described in Section 6.16, then evaluate an expression like:

(def art (db/request-album-art p2 3 3))
Replace the argumentswith thevarholding yourplayer connection, theproper

𝑆𝑟 number for themedia slot the art is found in, and the𝑎𝑟𝑡𝑤𝑜𝑟𝑘 ID of the album
art, and dysentery will open a window like Figure 32 showing the image. To load
artwork for a non-rekordbox track, add an additional argument with the value 2 at
the end.

6.8 Beat Grids
The CDJs do not send any timing information other than beat numbers during
playback, which has made it difficult to offer absolute timecode information. The
discovery of beat grid requests provides a clean answer to the problem. The beat
grid for a track is a list of every beat which occurs in the track, along with the

6 TRACK METADATA 34

Figure 32: Example album art window

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 2204 0f 02 1400

0000000c (12) 06 06 00 00 00 00 00 00 00 00 00 0010

11 𝐷 08 𝑆𝑟 01 11 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥20

Figure 33: Track beat grid request message

point in time at which that beat would occur if the track were played at its standard
(100%) tempo. Armedwith this table, it is possible to translate any beat packet into
an absolute position within the track, and, combined with the tempo information,
to generate timecode signals allowing other software (such as video resources) to
sync tightly with DJ playback.

To request the beat grid of a track, send a message with 𝑡𝑦𝑝𝑒 2204 containing
the 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 ID of the track, like the one shown in Figure 33.

As usual, 𝑠𝑒𝑞 should be incremented each time you send a query, and will be
used to identify the response messages. 𝐷 should have the same value you used
in your initial query context setup packet, identifying the device that is asking the
question. 𝑆𝑟 is the slot in which the track being asked about can be found, and
has the same values used in CDJ status packets, as shown in Figure 11. Finally,
𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 identifies the specific beat grid you are requesting, as found in a CDJ
status packet or playlist response. As with graphical requests, the value after 𝐷,
which identifies the location of the menu for which data is being loaded, is 8.

The response will be a message with 𝑡𝑦𝑝𝑒 4602, containing four arguments.
The first argument echoes back our request type, which was 2204. The second al-
ways seems to be 0. The third contains the length of the beat grid in bytes, which
seems redundant, because that is also conveyed in the fourth argument itself, which
is a blob containing the actual bytes of the beat grid, as shown in Figure 34. How-
ever, if there is no beat grid available, this value will be 0, and the blob field will be
completely omitted from the response, so you must not try to read it!

The beat grid itself is spread through the value returned as argument 4, con-

6 TRACK METADATA 35

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4602 0f 04 1400

0000000c (12) 06 06 06 03 00 00 00 00 00 00 00 0010

11 00002204 11 00000000 11 𝑙𝑒𝑛𝑔𝑡ℎ 1420

𝑙𝑒𝑛𝑔𝑡ℎ Beat grid bytes
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 34: Track beat grid response message

sisting of one-byte beat-within-bar numbers (labeled𝐵𝑏 in Figure 11), followed by
four-byte timing information, specifying the number of milliseconds after the start
of the track (when played at its native tempo) at which that beat falls.

The 𝐵𝑏 value of the first beat in the track is found at byte 0x14 of argument
4, and the time at which that beat occurs, in milliseconds, is encoded as a 4-byte
little-endian13 integer at bytes 15–18. Subsequent beats are found at 0x10-byte
intervals, so the second𝐵𝑏 value is found at byte 24, and the second beat’s time, in
milliseconds from the start of the track, is the big-endian integer at bytes 25–28.
The 𝐵𝑏 value for the third beat is at byte 34, and its millisecond time is at bytes
35–38, and so on.

The purpose of the other bytes within the beat grid is so far undetermined. It
looks like there may be some sort of monotonically increasing value following the
beat millisecond value, but what it means, and why it sometimes skips values, is
mysterious.

6.9 Requesting Track Waveforms
Waveform data for tracks can be requested, both the preview, which is 400 pixels
long, and the detailedwaveform, which uses 150 pixels per second of track content.
There is also an even tinier 100 pixel preview, which is used by older players such as
the pre-Nexus CDJ 900, returned as the final 100 bytes of the preview response.

 We also know how to request Nxs2-style higher resolution and color
waveforms, see Section 6.10 for details.

13Yes, unlike almost all numbers in the protocol, beat grid and cue point times are little-endian.

6 TRACK METADATA 36

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 2004 0f 05 1400

0000000c (12) 06 06 06 06 03 00 00 00 00 00 00 0010

11 𝐷 08 𝑆𝑟 01 11 00000004 11 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 1120

0000000030

Figure 35: Waveform preview request message

To request the waveform preview of a track, send a message with 𝑡𝑦𝑝𝑒 2004
containing the 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 ID of the track, like the one shown in Figure 35.

As usual, 𝑠𝑒𝑞 should be incremented each time you send a query, and will be
used to identify the response messages. 𝐷 should have the same value you used
in your initial query context setup packet, identifying the device that is asking the
question. 𝑆𝑟 is the slot in which the track being asked about can be found, and
has the same values used in CDJ status packets, as shown in Figure 11. Finally,
𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 identifies the specific track whose waveform preview you are request-
ing, as found in aCDJ status packet or playlist response. Aswith graphical requests,
the value after𝐷, which identifies the location of the menu for which data is being
loaded, is 8.

 You may have noticed that the argument list of the message in Fig-
ure 35 specifies that there are five arguments, but in fact the message
contains only the first four, numeric, arguments. The fifth, blob, ar-
gument is missing. This seems to imply the blob is empty, and this
very strange feature of the protocol is, in fact, the way the trackmeta-
data is requested. The fifth argument must be specified in the mes-
sage header but not actually present. When reading messages from a
player, the same rules apply: There is always a numeric field right be-
fore a blob field, and it always contains a seemingly-redundant copy
of the blob length, and if that numeric field has the value 0, youmust
not try to read the blob field. Instead, expect the next field ormessage
to follow the numeric field.

The second argument has an unknown purpose, but we have seen values of 3
or 4 for it. The fourth argument is the size of the blob argument we are supposedly
going to send; since we are not sending a blob, we always send a 0 here.

The response will be a message with 𝑡𝑦𝑝𝑒 4402, containing four arguments.
The first argument echoes back our request type, which was 2004. The second

6 TRACK METADATA 37

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4402 0f 04 1400

0000000c (12) 06 06 06 03 00 00 00 00 00 00 00 0010

11 00002004 11 00000000 11 𝑙𝑒𝑛𝑔𝑡ℎ 1420

𝑙𝑒𝑛𝑔𝑡ℎ Waveform preview bytes
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 36: Waveform preview response message

always seems to be 0. The third contains the length of the waveform preview in
bytes. If this value is 0, the fourth argument will be omitted from the response.
When present, the fourth argument is a blob containing the actual bytes of the
waveform preview, as shown in Figure 36.

For this kind of waveform preview request, there are 900 (decimal) bytes of
waveform data returned. The first 800 of them contain 400 columns of waveform
data, in the form of two-byte pairs, where the first byte is the pixel height of the
waveform at that column (a value ranging from 0 to 31), and the second byte is the
whiteness, as before, where 0 is blue and 7 is fully white. My players seem to only
pay attention to the highest bit of whiteness, drawing the waveform as either very
dark or light blue accordingly.

To experiment with this, start up dysentery in a Clojure REPL and connect to
a player as described in Section 6.16, then evaluate an expression like:

(db/request-waveform-preview p2 3 1060)
Replace the argumentswith thevarholding yourplayer connection, theproper

𝑆𝑟 number for the media slot the track is found in, and the 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 ID of the
track, and dysentery will open a window like Figure 37 showing the waveform pre-
view.

The remaining hundred bytes appear to contain an even more compact 100-
columnpreview representationof thewaveformwhich is shownonpre-NexusCDJ
900 players as shown inFigure 38. Our best guess is that for each byte, the four low-
order bits encode the height of the waveform in that column, and the high-order
bits may encode saturation again?

Requesting the detailed waveform is very similar to requesting the preview, but
the request type and arguments are slightly different. To request the detailed wave-
form of a track, send a message with 𝑡𝑦𝑝𝑒 2904 containing the 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 ID of

6 TRACK METADATA 38

Figure 37: Example waveform preview window

Figure 38: CDJ 900 waveform preview

the track, like the one shown in Figure 39.
As usual, 𝑠𝑒𝑞 should be incremented each time you send a query, and will be

used to identify the response messages. 𝐷 should have the same value you used
in your initial query context setup packet, identifying the device that is asking the
question. 𝑆𝑟 is the slot in which the track being asked about can be found, and
has the same values used in CDJ status packets, as shown in Figure 11. Finally,
𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 identifies the specific track whose waveform preview you are request-
ing, as found in a CDJ status packet or playlist response. Since this is a graphical
request, I would expect the value after𝐷, which identifies the location of themenu
for which data is being loaded, to be 8 like it is for others, but for some reason it
is 1, which usually means the main menu... maybe because the scrolling waveform
appears in the same location on the display as the main menu? In many ways this
protocol is a mystery wrapped in an enigma.

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 2904 0f 03 1400

0000000c (12) 06 06 06 00 00 00 00 00 00 00 00 0010

11 𝐷 01 𝑆𝑟 01 11 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 11 0000000020

Figure 39: Waveform detail request message

6 TRACK METADATA 39

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4a02 0f 04 1400

0000000c (12) 06 06 06 03 00 00 00 00 00 00 00 0010

11 00002904 11 00000000 11 𝑙𝑒𝑛𝑔𝑡ℎ 1420

𝑙𝑒𝑛𝑔𝑡ℎ Waveform detail bytes
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 40: Waveform detail response message

The waveform detail response is essentially identical to the waveform preview
response, with just the type numbers changed. It will be amessagewith 𝑡𝑦𝑝𝑒4a02,
containing four arguments. Thefirst argument echoes backour request type, which
was 2904. The second always seems to be 0. The third contains the length of the
waveform detail in bytes. If this value is 0, the fourth argument will be omitted
from the response. When present, the fourth argument is a blob containing the
actual bytes of the waveform detail, as shown in Figure 40.

Thecontent of thewaveformdetail is simpler andmore compact than thewave-
form preview. Every byte reperesents one segment of the waveform, and there are
150 segments per second of audio. (These seem to correspond to “half frames”
counted as 03.5F following the seconds in the player display.) Each byte encodes
both a color and height. The three high-order bits encode the color, ranging from
darkest blue at 0 to near-white at 7. The five low-order bits encode the height of
the waveform at that point, from 0 to 31 pixels.

6.10 Requesting Nxs2 Track Waveforms
Thanks to somewonderful analysis14 by@jan200015 we nowknowhow to request
and interpret the higher resolution and color waveforms supported by the nxs2
series of players.

Both the enhanced waveform preview and enhanced detail are requested us-
ing variations on the same request type, which asks for specific content from the

14https://github.com/Deep-Symmetry/dysentery/issues/9
15https://github.com/jan2000

https://github.com/Deep-Symmetry/dysentery/issues/9
https://github.com/jan2000

6 TRACK METADATA 40

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 2c04 0f 04 1400

0000000c (12) 06 06 06 06 00 00 00 00 00 00 00 0010

11 𝐷 08 𝑆𝑟 01 11 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 11 34 56 57 50 1120

00 54 58 4530

Figure 41: Nxs2 waveform preview request message

ANLZ0000.EXT file created by rekordbox. See the Crate Digger project16, which
has its own analysis document, if you would like to learn more about the structure
and content of these files.

To request the enhancedwaveformpreviewof a track, send amessagewith 𝑡𝑦𝑝𝑒
2c04 containing the 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 ID of the track, the tag type identifier PWV4 and
the file extension identifier EXT encoded as four-byte numbers, holding the ASCII
in big-endian (backwards) order, as shown in Figure 41.

As usual, 𝑠𝑒𝑞 should be incremented each time you send a query, and will be
used to identify the response messages. 𝐷 should have the same value you used
in your initial query context setup packet, identifying the device that is asking the
question. 𝑆𝑟 is the slot in which the track being asked about can be found, and
has the same values used in CDJ status packets, as shown in Figure 11. For some
reason the value after 𝐷, which identifies the location of the menu for which data
is being loaded, is 1 in this case. 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 identifies the specific track whose
analysis you are requesting, as found in a CDJ status packet or playlist response,
and the final two numeric arguments specify that you are interested in the PWV4
tag (which holds the enhanced waveform preview) from the track’s EXT extended
analysis file.

The response will be a message with 𝑡𝑦𝑝𝑒 4f02, containing five arguments.
The first argument echoes back our request type, which was 2c04. The second al-
ways seems to be 0. The third contains the length of the requested tag (holding the
enhanced waveform preview) in bytes. If this value is 0, the fourth argument will
be omitted from the response. When present, the fourth argument is a blob con-
taining the actual bytes of the enhanced waveform preview, as shown in Figure 42.
The fifth argument has an unknown purpose and so far seems to always have the
value 0.

The extended preview data begins at byte 34 and is 7,200 (decimal) bytes long,
representing 1,200 columns of waveform preview information.

The color waveform preview entries are the most complex of any of the wave-
form tags. See the discussion on Github17 for how the analysis was performed.

16https://github.com/Deep-Symmetry/crate-digger
17https://github.com/Deep-Symmetry/dysentery/issues/9

https://github.com/Deep-Symmetry/crate-digger
https://github.com/Deep-Symmetry/dysentery/issues/9

6 TRACK METADATA 41

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4f02 0f 05 1400

0000000c (12) 06 06 06 03 06 00 00 00 00 00 00 0010

11 00002c04 11 00000000 11 𝑙𝑒𝑛𝑔𝑡ℎ 1420

𝑙𝑒𝑛𝑔𝑡ℎ Extended waveform preview bytes30

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

11 00000000

Figure 42: Nxs2 waveform preview response message

@jan2000 created an audio file containing a 10 second sine wave sweep from 20
Hz to 20 kHz, and analyzed that in rekordbox. The results are represented in Fig-
ure 43.

As a summary, the top six stripes plot the values of each six channels of wave-
formpreview information. Thefirst byte of data is the first columnof the top stripe,
the next byte is the first column of the second stripe, and so on, until we reach the
seventh byte, which is the second column of the first stripe.

We are not sure what the top two stripes represent, but they do seem to have
an effect on the blue version of the waveform preview, so they somehow encode
“whiteness”. Thenext stripe, corresponding to byte2of each column, indicates how
much sound energy is present in the bottom half of the frequency range (it drops
around 10 KHz). The stripe corresponding to byte 3 reflects how much sound
energy is present in the bottom third of the frequency range, byte 4 reflects how
much sound energy is in the middle of the frequency range, and byte 5 tracks the
sound energy in the top of the frequency range.

The stripe labeled “color” reflect’s@jan2000’s algorithmfor combiningbytes 3,
4, and 5 into a color preview, and the bottom stripe is his approach for deriving the
blue preview from that and the other two stripes.

The calculations used byBeat Link to build its own color previews can be found
in thesegmentColor andsegmentHeightmethodsof theWaveformPreview
class18, and theway they are used to draw the actual graphical representation can be

18https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/

https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/data/WaveformPreview.html

6 TRACK METADATA 42

Figure 43: Sine sweep analysis

found in the updateWaveform method of the WaveformPreviewComponent
class19. These produce attractive results, but it is certainly possible that refinements
can be found in the future.

As mentioned, requesting the detailed color waveform is a simple variant of
the request used to obtain the preview. The same request type is used, and the only
difference is that the tag type requested to obtain the scrollable detail view is PWV5.
The full request is shown in Figure 44.

As usual, 𝑠𝑒𝑞 should be incremented each time you send a query, and will be
used to identify the response messages. 𝐷 should have the same value you used
in your initial query context setup packet, identifying the device that is asking the
question. 𝑆𝑟 is the slot in which the track being asked about can be found, and
has the same values used in CDJ status packets, as shown in Figure 11. For some
reason the value after 𝐷, which identifies the location of the menu for which data
is being loaded, is 1 in this case. 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 identifies the specific track whose
analysis you are requesting, as found in a CDJ status packet or playlist response,
and the final two numeric arguments specify that you are interested in the PWV5
tag (which holds the enhanced waveform detail) from the track’s EXT extended
analysis file.

data/WaveformPreview.html
19https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/

data/WaveformPreviewComponent.html

https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/data/WaveformPreview.html
https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/data/WaveformPreview.html
https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/data/WaveformPreview.html
https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/data/WaveformPreview.html
https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/data/WaveformPreviewComponent.html
https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/data/WaveformPreviewComponent.html

6 TRACK METADATA 43

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 2c04 0f 04 1400

0000000c (12) 06 06 06 06 00 00 00 00 00 00 00 0010

11 𝐷 08 𝑆𝑟 01 11 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 11 35 56 57 50 1120

00 54 58 4530

Figure 44: Nxs2 waveform detail request message

The response will be a message with 𝑡𝑦𝑝𝑒 4f02, containing five arguments.
The first argument echoes back our request type, which was 2c04. The second al-
ways seems to be 0. The third contains the length of the requested tag (holding the
enhanced waveform detail) in bytes. If this value is 0, the fourth argument will be
omitted from the response. When present, the fourth argument is a blob contain-
ing the actual bytes of the enhanced waveform segments, as shown in Figure 45.
The fifth argument has an unknown purpose and so far seems to always have the
value 0.

The extended waveform detail data begins at byte 34 and has a variable length,
but a vastly simpler structure than the waveform preview. Every pair of bytes rep-
resents one segment of the waveform, and there are 150 segments per second of
audio. (These seem to correspond to “half frames” counted as 03.5F following the
seconds in the player display.) Each pair of bytes encodes the height of the wave-
form at that segment as a five bit value, along with three bits each of red, green, and
blue intensity, arranged as shown in Figure 46.

6.11 Requesting Cue Points and Loops

 This section discusses how to obtain cue points and loops which are
compatible with original nexus players. See Section 6.12 for how
you can obtain a newer format which includes hot cue colors, DJ-
assigned comment text, and hot cues beyond C.

The locations of the cue points and loops stored in a track can be obtainedwith
a request like the one shown in Figure 47.

As always,𝑇𝑥𝐼𝐷 should be 1 for the first query packet you send, 2 for the next,
and so on. 𝐷 should have the same value you used in your initial query context
setup packet, identifying the device that is asking the question. 𝑆𝑟 is the slot in
which the track being asked about can be found, and has the same values used in
CDJ status packets, as shown in Figure 11, and as usual, 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 is the database

6 TRACK METADATA 44

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4f02 0f 05 1400

0000000c (12) 06 06 06 03 06 00 00 00 00 00 00 0010

11 00002c04 11 00000000 11 𝑙𝑒𝑛𝑔𝑡ℎ 1420

𝑙𝑒𝑛𝑔𝑡ℎ Extended waveform detail bytes30

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

11 00000000

Figure 45: Nxs2 waveform detail response message

f e d c b a 9 8 7 6 5 4 3 2 1 0

𝑟𝑒𝑑 𝑔𝑟𝑒𝑒𝑛 𝑏𝑙𝑢𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 0 0

Figure 46: Nxs2 waveform detail segment bits

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 2104 0f 02 1400

0000000c (12) 06 06 00 00 00 00 00 00 00 00 00 0010

11 𝐷 08 𝑆𝑟 01 11 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥20

Figure 47: Cue point request message

6 TRACK METADATA 45

ID of the track you’re interested in.
The response will be a message with 𝑡𝑦𝑝𝑒 4702, containing nine arguments.

The first argument echoes back our request type, which was 2104. The second
always seems to be 0. The third contains the length of the blob containing cue and
loop points in bytes, which seems redundant, because that is also conveyed in the
fourth argument itself, which is a blob containing the actual bytes of the cue and
loop points, as shown in Figure 48. However, if there are no cue or loop points,
this value will be 0, and the following blob field will be completely omitted from
the response, so you must not try to read it!

The fifth argument is a number with uncertain purpose. It always seems to
have the value 0x24, which may be telling us the size of each cue/loop point entry
in argument 4 (they do seem to each take up 24 bytes, as shown in Figure 49). The
sixth argument, shown as𝑛𝑢𝑚ℎ𝑜𝑡, seems to contain the number of hot cue entries
found in argument 4, and the seventh, 𝑛𝑢𝑚𝑐𝑢𝑒 seems to contain the number of
ordinary memory point cues. The eighth argument is a number containing the
length of the second binary field which follows it. We don’t know the meaning of
the final, binary, argument.

As described above, the first binary field in the cue point response is divided
up in to 24-byte entries, each of which potentially holds a cue or loop point. They
are not in any particular order, with respect to the time at which they occur in the
track. They each have the structure shown in Figure 49.

The first byte,𝐹𝑙, has the value 01 if this entry specifies a loop, or 00 otherwise.
The second byte, 𝐹𝑐, has the value 01 if this entry contains a cue point, and 00
otherwise. Entries with loops have the value 01 in both of these bytes, because
loops also act as cue points. If both values are00, the entry is ignored (it is probably
a leftover cue point that was deleted by the DJ). The third byte, labeled 𝐻 , is 00
for ordinary cue points, but has a value if this entry defines a hot cue. Hot cues A
through C are represented by the values 01, 02, and 03.

The actual location of the cue and loop points are in the values 𝑐𝑢𝑒 and 𝑙𝑜𝑜𝑝.
These are both 4-byte integers, and like beat grid positions, but unlike essentially
every other number in the protocol, they are sent in little-endian byte order. For
non-looping cue points, only 𝑐𝑢𝑒 has a meaning, and it identifies the position of
the cue point in the track, in 1

150 second units. For loops, 𝑐𝑢𝑒 identifies the start
of the loop, and 𝑙𝑜𝑜𝑝 identifies the end of the loop, again in 1

150 second units.

6.12 Requesting Nxs2 Cue Points and Loops
For tracks that have been exported since the introduction of the nxs2 series of play-
ers, rekordbox includes a richer set of information about cue points and loops. In
addition to the information described in Section 6.11, you can learn about any cus-
tom colors a DJ has assigned to their hot cues, as well as optional text comments
describing hot cues, mamory points, and loops. And while older players only sup-
ported hot cues A through C, this new format returns more.

6 TRACK METADATA 46

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4702 0f 09 1400

0000000c (12) 06 06 06 03 06 06 06 06 03 00 00 0010

11 00002104 11 00000000 11 𝑙𝑒𝑛𝑔𝑡ℎ1 1420

𝑙𝑒𝑛𝑔𝑡ℎ1 Cue and loop point bytes30

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

11 00000036 11 𝑛𝑢𝑚ℎ𝑜𝑡 11 𝑛𝑢𝑚𝑐𝑢𝑒
11 𝑙𝑒𝑛𝑔𝑡ℎ2 14 𝑙𝑒𝑛𝑔𝑡ℎ2 Unknown bytes

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 48: Cue point response message

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝐹𝑙 𝐹𝑐 𝐻 00 00 00 00 00 00 00 00 00 𝑐𝑢𝑒00

𝑙𝑜𝑜𝑝 00 00 00 00 00 00 00 00 00 00 00 0010

00 00 00 0020

Figure 49: Cue/loop point entry

6 TRACK METADATA 47

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 2b04 0f 03 1400

0000000c (12) 06 06 06 00 00 00 00 00 00 00 00 0010

11 𝐷 08 𝑆𝑟 01 11 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 11 0000000020

Figure 50: Extended cue point request message

 In order to work well in mixed-player environments, the firmware of
even older players has been updated to return this information if it is
found in the exported data, so it is worth trying to ask for it. If the
query described in this section fails, then you can fall back on the one
shown in Section 6.11.

Enhanced information about the cue points and loops stored in a track can be
obtained with a request like the one shown in Figure 50.20

As always,𝑇𝑥𝐼𝐷 should be 1 for the first query packet you send, 2 for the next,
and so on. 𝐷 should have the same value you used in your initial query context
setup packet, identifying the device that is asking the question. 𝑆𝑟 is the slot in
which the track being asked about can be found, and has the same values used in
CDJ status packets, as shown in Figure 11, and as usual, 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 is the database
ID of the track you’re interested in.

The response will be a message with 𝑡𝑦𝑝𝑒 4e02, containing five arguments.
The first argument echoes back our request type, which was 2b04. The second
always seems to be 0. The third contains the length of the blob containing cue and
loop points in bytes, which seems redundant, because that is also conveyed in the
fourth argument itself, which is a blob containing the actual bytes of the cue and
loop points, as shown in Figure 51. However, if there are no cue or loop points,
this value will be 0, and the following blob field will be completely omitted from
the response, so you must not try to read it!

The fifth argument reports the number of cue point entries found in the blob.
Because each extended cue entry can include a comment string, they have variable
lengths, so each entry needs to be examined in order to figure outwhere it ends, and
therefore the next one begins. The extended entry structure is shown in Figure 52.

The first four bytes, 𝑙𝑒𝑛𝑔𝑡ℎ, hold the length of the current entry, and so can be
used to find the start of the next entry. Like other numbers in cue point responses
(and unlike most numbers in the protocol), this is sent in little-endian byte order.
The fourth byte, labeled 𝐻 , is 00 for ordinary cue points, but has a value if this
entry defines a hot cue. Hot cues A through H are represented by the values 01
through 08.

20Thanks to Matt Positive, https://soundcloud.com/mattpositive, for packet captures!

https://soundcloud.com/mattpositive

6 TRACK METADATA 48

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 4e02 0f 05 1400

0000000c (12) 06 06 06 03 06 00 00 00 00 00 00 0010

11 00002b04 11 00000000 11 𝑙𝑒𝑛𝑔𝑡ℎ1 1420

𝑙𝑒𝑛𝑔𝑡ℎ1 Cue and loop point bytes30

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

11 𝑛𝑢𝑚𝑒𝑛𝑡𝑟𝑖𝑒𝑠

Figure 51: Extended cue point response message

𝐹𝑙, at byte 06 has the value 01 if this entry specifies a memory point and 02 if
it is a loop. If both 𝐻 and 𝐹𝑙 are 00, the entry should be ignored (it is probably a
leftover cue point that was deleted by the DJ).

The actual location of the cue and loop points are in the values 𝑐𝑢𝑒 and 𝑙𝑜𝑜𝑝.
These are both 4-byte integers, and as noted above, they are sent in a little-endian
byte order. For non-looping cue points, only 𝑐𝑢𝑒 has a meaning, and it identifies
the position of the cue point in the track, in 1

150 second units. For loops, 𝑐𝑢𝑒
identifies the start of the loop, and 𝑙𝑜𝑜𝑝 identifies the end of the loop, again in 1

150
second units.

𝑙𝑒𝑛𝑐 at byte 48 is a two-byte, little-endian integer that contains the length of
the comment. If it is zero, there is no comment. Otherwise, 𝑐𝑜𝑚𝑚𝑒𝑛𝑡will follow
𝑙𝑒𝑛𝑐, taking up that many bytes, as a string (in UTF-16 encoding with a trailing
0000 character). So if 𝑙𝑒𝑛𝑐 isn’t zero, it will be an even number with minimum
value four, representing a comment that is one character long.

Immediately after 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 (in other words, starting 𝑙𝑒𝑛𝑐+4a past the start
of the entry) there are four one-byte values containing color information. 𝑐 appears
to be a code identifying the colorwithwhich rekordbox displays the cue, by looking
it up in a table. There have been sixteen codes identified, and their corresponding
RGB colors can be found by looking at the findRecordboxColor staticmethod
in the Beat Link library’s CueList class.21 The next three bytes, 𝑟, 𝑔, and 𝑏, make
up an RGB color specification which is similar, but not identical, to the color that

21https://deepsymmetry.org/beatlink/apidocs/

https://deepsymmetry.org/beatlink/apidocs/

6 TRACK METADATA 49

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑙𝑒𝑛𝑔𝑡ℎ 𝐻 00 𝐹𝑙 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑐𝑢𝑒00

𝑙𝑜𝑜𝑝 𝑢𝑛𝑘𝑛𝑜𝑤𝑛210

20

30

𝑙𝑒𝑛𝑐 𝑐𝑜𝑚𝑚𝑒𝑛𝑡40

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

𝑐 𝑟 𝑔 𝑏 𝑢𝑛𝑘𝑛𝑜𝑤𝑛3

Figure 52: Extended cue/loop point entry

rekordbox displays. We believe these are the values used to illuminate the RGB
LEDs in a player that has loaded the cue. When no color is associated with the cue,
all four of these bytes have the value 00.

We do not know what, if anything, is sent in the remaining bytes of the the
entry.

6.13 Requesting All Tracks
If you want to cache all the metadata associated with a media stick, this query is a
good starting point. Send a packet like the one shown in Figure 53.

As always, 𝑇𝑥𝐼𝐷 should be 1 for the first query packet you send, 2 for the
next, and so on. 𝐷 should have the same value you used in your initial query
context setup packet, identifying the device that is asking the question. 𝑆𝑟 is the
slot in which the track being asked about can be found, and 𝑇𝑟 is the type of the
track; these two bytes have the same values used in CDJ status packets, as shown
in Figure 11. The new 𝑠𝑜𝑟𝑡 parameter determines the order in which the tracks
are sorted, and that also affects the item type returned, along with the secondary
information (beyond the title) that it contains about the track, as described in Sec-
tion 6.13.1. We will start out assuming the tracks are being requested in title order,
which can be done by sending a 𝑠𝑜𝑟𝑡 argument value of 0 or 1, and that the DJ has
configured the media device to show artists as the second column.

Track list requests (just likemetadata requests) are built on themechanism that

6 TRACK METADATA 50

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 1004 0f 02 1400

0000000c (12) 06 06 00 00 00 00 00 00 00 00 00 0010

11 𝐷 01 𝑆𝑟 𝑇𝑟 11 𝑠𝑜𝑟𝑡20

Figure 53: Full track list request message

is used to request anddraw scrollablemenus on theCDJs, explored inmore breadth
in Section 7. The player responds with a success indicator, saying it is ready to send
these “menu items” and reportinghowmanyof themare available,much like shown
in Figure 24, although the first argument will be 1004 to reflect the message type
we just sent, rather than 2002 as it was for the metadata request.

As with metadata, the next step is to send a “render menu” request like that in
Figure 25 to get the actual results. But the number of results available is likely to
be much higher than shown in Figure 24, because we have asked about all tracks in
the media slot. That means we will probably need more than one “render menu”
request to get them all.

I don’t know how many items you can safely ask for at one time. I have had
success with values as high as 64 on my CDJ-2000 nexus players, but they failed
when asking for numbers in the thousands. So to be safe, you should ask for the
results in chunks of 64 or smaller, by setting 𝑙𝑖𝑚𝑖𝑡 and 𝑙𝑖𝑚𝑖𝑡2 to the smaller of 64
and the remaining number of results you want, and incrementing 𝑜𝑓𝑓𝑠𝑒𝑡 by 64 in
each request until you have retrieved them all.

As with metadata requests, you will get back two more messages than you ask
for, because you first get amenu headermessage (with 𝑡𝑦𝑝𝑒 4001, Figure 27), then
the requested menu items are sent (with 𝑡𝑦𝑝𝑒 4101, Figure 28), and finally these
are followed by amenu footermessage (with 𝑡𝑦𝑝𝑒4201, Figure 29). Thiswrapping
happens with all “render menu” requests, and the menu footer is an easy way to
know you are done, although you can also count the messages.

Thedetails of themenu items are slightly different than in the case of ametadata
request. In the example where you are retrieving tracks in the default order, with
the second column configured to be artists, they will have the content shown in
Table 6.

Arg Type Meaning
1 number artist id
2 number 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 id of track
3 number length in bytes of Label 1
4 string Label 1, Track Title

Table 6: Track List Entries with Artists

6 TRACK METADATA 51

Arg Type Meaning
5 number length in bytes of Label 2
6 string Label 2, Artist Name
7 number type of this item, 0704 for Title and Artist
8 number some sort of flags field, details still unclear
9 number unknown

10 number unknown
11 number unknown
12 number unknown

Table 6: Track List Entries with Artists

6.13.1 Alternate Track List Sort Orders

As noted above, you can request the track list in a diferent order by supplying a dif-
ferent value for the 𝑠𝑜𝑟𝑡 parameter. The value 0 or 1 gives the order just described,
with the default second column information configured for the media. The 𝑠𝑜𝑟𝑡
values discovered so far are shown in the Table 7, and return menu items with the
specified item type values in argument 7.

Sort Type Description
01 0704 Title and Artist sorted by title
02 0704 Title and Artist sorted by artist
03 0204 Sorted by album, Arg 1 holds album ID, Label 2 holds album

name
04 0d04 Sorted by BPM, Arg 1 holds BPM×100, Label 2 empty
05 0a04 Sorted by rating, Arg 1 holds rating, Label 2 empty
06 0604 Sorted by genre, Arg 1 holds genre ID, Label 2 holds genre

name
07 2304 Sorted by comment, Arg 1 holds comment ID, Label 2 holds

comment
08 0b04 Sorted by time, Arg 1 holds track length in seconds, Label 2

empty
09 2904 Sorted by remixer, Arg 1 holds remixer ID, Label 2 holds

remixer
0a 0e04 Sorted by label, Arg 1 holds label ID, Label 2 holds label
0b 2804 Sorted by original artist, Arg 1 holds original artist ID, Label 2

holds original artist
0c 0f04 Sorted by key, Arg 1 holds key ID, Label 2 holds key text
0d 1004 Sorted by bit rate, Arg 1 holds bit rate, Label 2 empty
10 2a04 Sorted byDJ play count, Arg 1 holds play count, Label 2 empty
11 2e04 Sorted by date added, Arg 1 holds date ID, Label 2 holds date

text

Table 7: Sort Orders

6 TRACK METADATA 52

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 𝑇𝑥𝐼𝐷 10 1105 0f 04 1400

0000000c (12) 06 06 06 06 00 00 00 00 00 00 00 0010

11 𝐷 01 𝑆𝑟 01 11 𝑠𝑜𝑟𝑡 11 𝑖𝑑 1120

𝑓𝑜𝑙𝑑𝑒𝑟?30

Figure 54: Playlist request message

To experiment with this, start up dysentery in a Clojure REPL and connect to
a player as described in Section 6.16, then evaluate an expression like:

(db/request-track-list p2 3)
Replace the arguments with the var holding your player connection and the

proper 𝑆𝑟 number for the media slot containing the tracks you want to list. You
can also add a third argument to specify a sort order, like this to sort all the tracks
in the USB slot by BPM:

(db/request-track-list p2 3 4)

6.14 Playlists
If you want to be more selective about the metadata that you are caching, you can
navigate the playlist folder hierarchy and deal with only specific playlists. This pro-
cess is essentially the same as asking for all tracks, except that in the playlist request
you specify the playlist or folder that you want to list. To start at the root of the
playlist folder hierarchy, you request folder 0. A playlist request has the struture
shown in Figure 54.

As always,𝑇𝑥𝐼𝐷 should be 1 for the first query packet you send, 2 for the next,
and so on. 𝐷 should have the same value you used in your initial query context
setup packet, identifying the device that is asking the question. 𝑆𝑟 is the slot in
which the track being asked about can be found, and has the same values used in
CDJ status packets, as shown in Figure 11. You specify the ID of the playlist or
folder you want to list in the 𝑖𝑑 argument, and set 𝑓𝑜𝑙𝑑𝑒𝑟? to 1 if you are asking
for a folder, and 0 if you are asking for a playlist. As noted above, to get the top-
level list of playlists, ask for folder 0, by passing an 𝑖𝑑 of 0 and passing 𝑓𝑜𝑙𝑑𝑒𝑟? as
1.

Much as when listing all tracks, the responsemay tell you there aremore entries
in the playlist than you can retreive in a single request, so you should follow the
procedure outlined in Section 6.13 to request your results in smaller batches. The
followup queries that you send are identical for playlists as they are described in
that section. The actual menu items returned when you are asking for a folder have
the content shown in Table 8.

6 TRACK METADATA 53

Arg Type Meaning
1 number parent folder id
2 number id of playlist or folder
3 number length in bytes of Label 1
4 string Label 1, Name of playlist or folder
5 number length in bytes of Label 2
6 string Label 2, empty
7 number type of this item, 01 for folder, 08 for playlist
8 number unknown
9 number unknown

10 number playlist position
11 number unknown
12 number unknown

Table 8: Folder List Entries

Whenyouhave requested aplaylist (bypassing its 𝑖𝑑 and a valueof 0 for𝑓𝑜𝑙𝑑𝑒𝑟?)
the responses you get are track list entries, just like when you request all tracks as
shown in Section 6.13. And just like in that section, you can get the results in a dif-
ferent order by specifying a value for 𝑠𝑜𝑟𝑡. The supported values and correspond-
ing item types returned seem to be the same as described there. Additionally, if
you pass a 𝑠𝑜𝑟𝑡 value of 09, the playlist entries will come back sorted by track title,
Label 2 will be empty, and the item type will be 2904.

To experiment with this, start up dysentery in a Clojure REPL and connect to
a player as described in Section 6.16, then evaluate an expression like:

(db/request-playlist p2 3 1)
Replace the argumentswith thevarholding yourplayer connection, theproper

𝑆𝑟 number for the media slot containing the playlist you want to list, and the
playlist ID. You can also add a third argument to specify that you want to list a
folder, like this using folder ID 0 to request the root folder:

(db/request-playlist p2 3 0 true)
Finally, you can add a fourth argument to specify a sort order, like this to sort

all the tracks in playlist 12 by genre:
(db/request-playlist p2 3 12 false 6)

6.15 Disconnecting
If youwant to be polite about the fact that you are done talking to the dbserver, you
can send it a message like the one shown in Figure 55. This will cause the player to
disconnect from its side.

6.16 Experimenting with Metadata
The best way to get a feel for the details of working with these messages is to load
dysentery into a Clojure REPL, as described on the project page, and play with

6 TRACK METADATA 54

0 1 2 3 4 5 6 7 8 9 a b c d e f

start 𝑇𝑥𝐼𝐷 𝑡𝑦𝑝𝑒 𝑎𝑟𝑔𝑠 𝑡𝑎𝑔𝑠

11 872349ae 11 fffffffe 10 0100 0f 00 1400

0000000c (12) 00 00 00 00 00 00 00 00 00 00 00 0010

Figure 55: Connection Teardown Message

some of the functions in the dysentery.dbserver namespace. Have no more
than three players connected and active on your network, so you have an unused
player number for dysentery to use. In this example, player number 1 is available,
so we set dysentery up to pose as player 1:

> lein repl
nREPL server started on port 53806 on host 127.0.0.1 -
nrepl://127.0.0.1:53806

REPL-y 0.3.7, nREPL 0.2.12
Clojure 1.8.0
Java HotSpot(TM) 64-Bit Server VM 1.8.0_77-b03
dysentery loaded.
dysentery.core=> (view/watch-devices :player-number 1)
Looking for DJ Link devices...
Found:

DJM-2000nexus 33 /172.16.42.3
CDJ-2000nexus 2 /172.16.42.4

To communicate create a virtual CDJ with address
/172.16.42.2, MAC address 3c:15:c2:e7:08:6c,
and use broadcast address /172.16.42.255

:socket #object[java.net.DatagramSocket 0x22b952b1
"java.net.DatagramSocket@22b952b1"],

:watcher #future[:status :pending, :val nil 0x3eb8f41b]
dysentery.core> (def p2 (db/connect-to-player 2 1))
Transaction: 4294967294, message type: 0x4000
(requested data available), argument count: 2, arguments:
number: 0 (0x00000000) [request type]
number: 2 (0x00000002) [# items available]

#'dysentery.core/p2
dysentery.core> (def md (db/request-metadata p2 2 1))
Sending > Transaction: 1, message type: 0x2002
(request track metadata), argument count: 2, arguments:
number: 16843265 (0x01010201) [player, menu, media, 1]
number: 1 (0x00000001) [rekordbox ID]

Received > Transaction: 1, message type: 0x4000
(requested data available), argument count: 2, arguments:
number: 8194 (0x00002002) [request type]

7 MENU REQUESTS 55

number: 11 (0x0000000b) [# items available]
Sending > Transaction: 2, message type: 0x3000
(render menu), argument count: 6, arguments:
number: 16843265 (0x01010201) [player, menu, media, 1]
number: 0 (0x00000000) [offset]
number: 11 (0x0000000b) [limit]
number: 0 (0x00000000) [unknown (0)?]
number: 11 (0x0000000b) [len_a (= limit)?]
number: 0 (0x00000000) [unknown (0)?]

Received 1 > Transaction: 2, message type: 0x4001
(rendered menu header), argument count: 2, arguments:
number: 1 (0x00000001) [unknown]
number: 0 (0x00000000) [unknown]

Received 2 > Transaction: 2, message type: 0x4101
(rendered menu item), argument count: 12, arguments:
number: 1 (0x00000001) [numeric 1 (parent id)]
number: 1 (0x00000001) [numeric 2 (this id)]
number: 80 (0x00000050) [label 1 byte size]
string: "Escape ft. Zoë Phillips" [label 1]
number: 2 (0x00000002) [label 2 byte size]
string: "" [label 2]
number: 4 (0x00000004) [item type: Track Title]
number: 16777216 (0x01000000) [column configuration?]
number: 0 (0x00000000) [album art id]
number: 0 (0x00000000) [playlist position]
number: 256 (0x00000100) [unknown]
number: 0 (0x00000000) [unknown]

...
Received 13 > Transaction: 2, message type: 0x4201
(rendered menu footer), argument count: 0, arguments:

#'dysentery.core/md
dysentery.core>

In this interaction, after setting up the watcher so we can find players on the
network, we set the var p2 to be a connection to player 2, in which we are posing
as player 1. Thenwe submit a metadata request to p2, requesting the track in slot 2
(SD card), with 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 id 1. You can see themessages being sent and received
to accomplish that. Formore functions that you can call, including the very flexible
experiment function, look at the source for thedysentery.dbservernames-
pace. Most of the response messages containing track metadata were omitted for
brevity; you will get more meaningful results trying it with your own tracks, and
then you can see all the details.

7 Menu Requests
Wehave already seenmany examples of themenumechanism in action,most clearly
with metadata requests (Section 6), track list requests (Section 6.13), and playlist

7 MENU REQUESTS 56

requests (Section 6.14). We’ll round out what is known about the other types of
menu request here.

The overall flow starts off by sending a menu request message whose type iden-
tifies the kind of menu desired (in the message 𝑡𝑦𝑝𝑒 field), along with some pa-
rameters that control the specific content to be shown, and perhaps establishing a
sort order. See, for example, Figure 54. If all goes well, the player responds with
a packet with 𝑡𝑦𝑝𝑒 4000 like the one in Figure 24, containing two numeric fields
that contain the original menu 𝑡𝑦𝑝𝑒 value you requested, followed by the number
of menu entries that are available for you to load.

To actually obtain those menu entries, you send one or more “menu render”
request messages with 𝑡𝑦𝑝𝑒 3000 as shown in Figure 25 and described below it,
allowing you to paginate through the results. This gets you a number of responses:
a menu header message (with 𝑡𝑦𝑝𝑒 4001, Figure 27), followed by the number of
menu itemmessages you requested (with 𝑡𝑦𝑝𝑒4101, Figure 28), andfinally amenu
footer message (with 𝑡𝑦𝑝𝑒 4201, Figure 29). The menu item types we have identi-
fied so far are listed in Section 6.5.

7.1 Known Menu Request Types
Table 9 shows the menu requests we have figured out so far. Not all menus are
available in all rekordboxdatabaes; theDJ candecidewhat indices and categories to
include, and that will determine which of these requests succeed. To find out what
is available, you can request the root menu, which gives you access to all available
menus. That is what a player will do when you use the Link button to connect to
media mounted on another player. The menus available to you will be returned as
entries in the root menu response, with Item Type values in the range 80–95, as
shown in Table 5.

The first argument to every menu request is a four-byte number where each
byte means something different. This byte is referred to as r:m:s:t in the Beat Link
code because of the function of its component bytes:

The first byte is always the device number𝐷 of the player making the request.
The second byte of the first argument identifies which menu location on the

player will be used to display the result (for example, the screen is sometimes split
with the user scrolling down the left, which is menu location 1, while displaying
the contents of the selected item on the right, which is menu location 2), and the
response format can be different in these cases. When showing metadata preview
for a selected track, themenu “location” value is 3, and when loading non-text data
like waveforms, album art or beat grid, the value of this byte is 8.

The third byte of this argument identifies the media slot, 𝑆𝑟, that information
is being requested from. The values are as described in the discussion of Figure 11.

And the final byte identifies the media type, 𝑇𝑟 being asked about, with values
also describe in the discussion of Figure 11.

To save space in Table 9, this always-present argument will be simply shown as
rmst.

7 MENU REQUESTS 57

Type Meaning Arguments
1000 Root Menu rmst, sort, 00ffffff
1001 Genre Menu rmst, sort
1002 Artist Menu rmst, sort
1003 Album Menu rmst, sort
1004 Track Menu22 rmst, sort
1006 BPM Menu rmst, sort
1007 Rating Menu rmst, sort
1008 Year Menu rmst, sort
100a Label Menu rmst, sort
100d Color Menu rmst, sort
1010 Time Menu rmst, sort
1011 Bitrate Menu rmst, sort
1012 History Menu rmst, sort?
1013 Filename Menu rmst, sort?
1014 Key Menu rmst, sort?
1302 Original Artist Menu rmst, sort
1602 Remixer Menu rmst, sort
1101 Artists for Genre rmst, sort, genre id
1102 Albums for Artist rmst, sort, artist id
1103 Tracks for Album rmst, sort, genre id
1107 Tracks for Rating rmst, sort, rating id
1108 Years for Decade rmst, sort, decade
110a Artist for Label rmst, sort, label id
110d Tracks for Color rmst, sort, color id
1110 Tracks for Time rmst, sort, time
1112 Tracks for History rmst, sort, history id
1114 Distances for Key rmst, sort, key id
1402 Albums for Orig. Artist rmst, sort, artist id
1702 Albums for Remixer rmst, sort, artist id
1201 Albums for Genre and Artist rmst, sort, genre id, artist id*

1202 Tracks for Artist and Album rmst, sort, artist id, album id*

1206 Tracks for BPM +/- % rmst, sort, bpm id, distance (+/- %;
can be 0–6)

1208 Tracks for Decade and Year rmst, sort, decade, year*
120a Albums for Label and Artist rmst, sort, label id, artist id*

1214 Tracks near Key rmst, sort, key id, distance
1502 Tracks for Original Artist

and Album
rmst, sort, artist id, album id*

1802 Tracks for Remixer and
Album

rmst, sort, artist id, album id*

Table 9: Menu Request Types

22See Figure 53.

8 FADER START 58

Type Meaning Arguments
*Use -1 for “all”.

1301 Tracks for Genre, Artist, and
Album

rmst, sort, genre id, artist id,* album
id*

130a Tracks for Label, Artist, and
Album

rmst, sort, label id, artist id,* album
id*
*Use -1 for “all”.

1105 Playlist Menu23 rmst, sort, playlist or folder id,
type (0:playlist; 1:folder)

1300 Search by substring rmst, sort, search string byte size,
search string (uppercase), unknown
(0)

2006 Folder Menu rmst, sort?, folder id, 0?

Table 9: Menu Request Types

7.2 Search
As noted in Table 9 there is a search “menu”. This is how the text-search feature of
CDJs with touch-strips is implemented. By passing an uppercase string argument
(in UTF-16 with a trailing 0000 character), preceded by its byte length, you can
obtain a list of all matching database entries (tracks, albums, artists, etc.)

8 Fader Start
Thanks to@ErikMinekus24 weknow thatwe can cause players to start or stop play-
ing by sending a packet like the one shown in Figure 56 to port 50001 of the play-
ers, with appropriate command values for 𝐶1 through 𝐶4 telling that player what
to do. A command value of 00 tells the corresponding player to start playing if it
isn’t already. The command 01 tells that player to stop playing and return to the
cue point, and the value 02 tells the player to stay in its current state. (It also seems
to work to broadcast the packet on port 50001, which makes sense, since it can be
interpreted individually by each player, so a single packet can be used to affect the
states of all four players if desired.)

Since this packet uses subtype 00, the length sent in 𝑙𝑒𝑛𝑟 has the value 0004,
reflecting the four bytes which follow it.

23See Section 6.14.
24https://github.com/ErikMinekus

https://github.com/ErikMinekus

9 CHANNELS ON AIR 59

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 0200

Device Name (padded with 00) 0110

00 𝐷 𝑙𝑒𝑛𝑟 𝐶1 𝐶2 𝐶3 𝐶420

Figure 56: Fader start packet

9 Channels On Air
Thanks to @jan200025 we know how the mixer reports which channels are cur-
rently on-air, and we can simulate this feature ourselves when there is no DJM on
the network. (If there is a DJM present, it will quickly reassert its own on-air state
for all the channels.)

The mixer broadcasts a packet like the one shown in Figure 57 to port 50001,
with appropriate flag values for𝐹1 through𝐹4 telling each player whether its chan-
nel is on-air. A flag value of 00 tells the corresponding player it is off the air (si-
lenced, either due to the cross fader, channel fader, or input source switch for that
channel), while 01 means the player’s channel is on the air.

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 0300

Device Name (padded with 00) 0110

00 𝐷 𝑙𝑒𝑛𝑟 𝐹1 𝐹2 𝐹3 𝐹4 00 00 00 00 0020

Figure 57: On Air flags packet

Since this packet uses subtype 00, the length sent in 𝑙𝑒𝑛𝑟 has the value 0009,
reflecting the nine bytes which follow it.

10 Loading Tracks
When running rekordbox, you can tell a player to load a track from the collection
by dragging the track onto the player icon. This is implemented by a command
that tells the player to load the track, and that command can be used to cause any
player to load a track which is available somewhere on the network (whether in the
rekordbox collection, or in a media slot on another player).

To do that, send a packet like the one shown in Figure 58 to port 50002 on
the player that you want to cause to load the track, with appropriate values for 𝐷
(the device number you are posing as),𝐷𝑟 (the device fromwhich the track should

25https://github.com/jan2000

https://github.com/jan2000

11 MEDIA SLOT QUERIES 60

be loaded), 𝑆𝑟 (the slot from which the track should be loaded), 𝑇𝑟 (the type of
the track), and 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥 (the track ID). These are the same values used in CDJ
status packets, as shown in Figure 11

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 1900

Device Name (padded with 00) 0110

00 𝐷 𝑙𝑒𝑛𝑟 𝐷 00 00 00 𝐷𝑟 𝑆𝑟 𝑇𝑟 00 𝑟𝑒𝑘𝑜𝑟𝑑𝑏𝑜𝑥20

00 00 00 32 00 00 00 00 00 00 00 00 00 00 00 0030

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0040

00 00 00 00 00 00 00 0050

Figure 58: Load Track command packet

Since this packet uses subtype 00, the length sent in 𝑙𝑒𝑛𝑟 has the value 0034,
reflecting the number of bytes which follow it.

Assuming the track can be loaded, the player will respond with a packet whose
type indicator (at byte 0a) has the value 1a to acknowledge the command, andwill
load the specified track.

11 Media Slot Queries
In order to correctly ask for the rootmenu for amedia slot, you need to knowwhat
kind of media (rekordbox or unanalyzed) is present in the slot so you can send the
proper 𝑇𝑟 value in your menu requests. You might also want to show information
about the entire media collection, such as its name, size, date created, number of
tracks, number of playlists, and free space. All of these things can be determined by
sending a packet like the one shown in Figure 59 to port 50002 on the player that
holds the slot, with appropriate values for𝐷 (the device number you are posing as),
𝐷𝑟 (the device owning the slot), and 𝑆𝑟 (the slot you’re interested in). These are
the same values used in CDJ status packets, as shown in Figure 11

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 0500

Device Name (padded with 00) 0110

00 𝐷 𝑙𝑒𝑛𝑟 IP address 00 00 00 𝐷𝑟 00 00 00 𝑆𝑟20

Figure 59: Media query packet

11 MEDIA SLOT QUERIES 61

Since this packet uses subtype 00, the length sent in 𝑙𝑒𝑛𝑟 has the value 000c,
reflecting the twelve bytes which follow it.

The player will respond by sending a packet like the one shown in Figure 60 to
port 50002 on the IP address specified in your query packet (so you want to supply
your own address to get the response). This contains the information about the
media mounted in the slot.

0 1 2 3 4 5 6 7 8 9 a b c d e f

51 73 70 74 31 57 6d 4a 4f 4c 0600

Device Name (padded with 00) 0110

00 𝐷 𝑙𝑒𝑛𝑟 00 00 00 𝐷𝑟 00 00 00 𝑆𝑟20

Media Name (UTF-16, padded with 0000)30

40

50

60

Creation Date (UTF-16, padded with 0000)70

80

unknown UTF-16 text (sometimes “1000”)90

𝑡𝑟𝑎𝑐𝑘𝑠 𝑥 00 𝑇𝑟 𝑎 00 00 𝑝𝑙𝑖𝑠𝑡𝑠a0

Total space Free spaceb0

Figure 60: Media response packet

Since this packet uses subtype 00, the length sent in 𝑙𝑒𝑛𝑟 has the value 009c,
reflecting the number of bytes which follow it.

The name of themedia stick (as assigned in rekordbox) can be found as aUTF-
16 encoded string starting at byte2c, andup to40bytes long, paddingwith trailing
null characters. This is followed by a textual representation of the creation date of
the media database, encoded in the same way, starting at byte 6c, up to 28 bytes
long. (Neither of these fields have meaningful values for “media” served by rekord-
box mobile from its collection on a phone.)

The number of rekordbox tracks present in the database is found in bytes a6
and a7, (this will be zero if there is no rekordbox database present). The purpose of
value 𝑥 at byte a8 is uncertain, we have seen values of 06 and 00, but don’t know
what they mean.

𝑇𝑟 at byte aa reports the type of tracks available, with the same values used in
CDJ status packets, as shown in Figure 11. In other words, it will have the value 01
when a rekordbox database is present, and 02 otherwise; this is the same value that

12 WHAT’S MISSING? 62

must be sent as𝑇𝑟 in order tomake a successful request for the rootmenu associated
with thismedia. Again, we don’t know the purpose of𝑎 at byteab, though it seems
that it might have the value 01 when there is a rekordbox database present, and 00
otherwise, hence the use of 𝑎 to suggest “analyzed.”

The number of rekordbox playlists present on the media (also zero if there is
no rekordbox database) is found at bytes ae and af.

Finally, there are two eight-byte numbers at the end of the packet. The value at
bytes b0 through b7 is the total capacity of the media (in bytes), and the value at
bytes b8 through bf is the number of unused bytes left on it.

12 What’s Missing?
We know this analysis isn’t complete. Here are some loose ends to explore.

12.1 Background Research
Prior to Evan and Austin’s breakthroughs, here is all we knew:

By setting up a managed switch to mirror traffic sent directly between CDJs,
we have been able to see how the Link Info operation is implemented: The players
open a direct TCP connection between each other, and send queries to obtain the
metadata about tracks with particular rekordbox ID values.

Using an Ethernet switch with port mirroring was, as we hoped, very help-
ful. As can be seen in the capture at https://github.com/deep-symmetry/
dysentery/raw/master/doc/assets/LinkInfo.pcapng, which shows a
CDJwith IP address 169.254.192.112 booting, the newCDJopens twoTCPcon-
nections to the other CDJ at 169.254.119.181.

The first session (given id 0 by Wireshark), which begins at packet 206, con-
necting to port 12523, determines the port to use for metadata queries.

The second TCP connection (Wireshark display filter tcp.stream eq 1),
beginning at packet 212 and connecting to port 1051, shows the track information
used by the Link Info display passing between the CDJs. You can see packets re-
flecting the initial display of a track that was already loaded, then new information
as the linked CDJ loaded three other tracks.

There is another capture athttps://github.com/deep-symmetry/dysentery/
raw/master/doc/assets/LinkInfo2.pcapng, withmoreLink Info streams
to be studied (all of the odd numbered tcp.stream values in Wireshark are the
relevant ones).

12.2 Mysterious Values
There are stillmany valueswith unknownmeanings described above, and undoubt-
edly menu types that have yet to be explored; I have focused on the ones that will
be immediately useful to Beat Link Trigger. Contributions of additional research
and insight are eagerly welcomed—Iwould have not gotten nearly this far without
help!

https://github.com/deep-symmetry/dysentery/raw/master/doc/assets/LinkInfo.pcapng
https://github.com/deep-symmetry/dysentery/raw/master/doc/assets/LinkInfo.pcapng
https://github.com/deep-symmetry/dysentery/raw/master/doc/assets/LinkInfo2.pcapng
https://github.com/deep-symmetry/dysentery/raw/master/doc/assets/LinkInfo2.pcapng

LIST OF FIGURES 63

12.3 Reading Data with Four Players
In order to offermetadata, timecode, waveforms, and so on, when there are four ac-
tual CDJs on the network, it is necessary get the data using a different mechanism.
See the Crate Digger project26 for the solution we have found.

Before we discovered how to ask players for metadata about particular tracks,
we did some research into the underlying rexordbox database. The database format
is called DeviceSQL,27 and there used to be a free quick start suite for working
with it28 but that site no longer exists because the original (California) company
Encirq29 was acquired by the JapaneseUbiquitousCorporation in 2008.30 It seems
to still be available,31 but I’d be surprised if they wanted to help out an open source
effort like this one.

12.4 CDJ Packets to Rekordbox
Performing a packet capture while rekordbox is running reveals that theCDJs send
unicast packets to the rekordbox address on port 50000, in addition to the packets
they normally broadcast on that port. Figuring out how topose as rekordboxmight
be useful in order to see what additional data these can offer, although that may be
much more work than posing as a CDJ.

12.5 Dysentery
If you have access to Pioneer equipment and are willing to help us validate this
analysis, and perhaps evenfigure outmore details, you canfind the tool that is being
used to perform this research at:
https://github.com/deep-symmetry/dysentery

List of Figures
1 Initial announcement packets from Mixer 4
2 First-stage Mixer device number assignment packets 4
3 Second-stage Mixer device number assignment packets 5
4 Final-stage Mixer device number assignment packets 5
5 Mixer keep-alive packets . 6
6 Initial announcement packets from CDJ 6
7 First-stage CDJ device number assignment packets 7
8 CDJ keep-alive packets . 7
9 Beat packets . 8

26https://github.com/Deep-Symmetry/crate-digger
27https://www.quora.com/What-database-system-did-Greg-Kemnitz-develop
28http://java.sys-con.com/node/328557
29https://www.crunchbase.com/organization/encirq-corporation
30http://www.ubiquitous.co.jp/en/news/press/pdf/p1730_01.pdf
31http://www.ubiquitous.co.jp/en/products/db/md/devicesql/

https://github.com/deep-symmetry/dysentery
https://github.com/Deep-Symmetry/crate-digger
https://www.quora.com/What-database-system-did-Greg-Kemnitz-develop
http://java.sys-con.com/node/328557
https://www.crunchbase.com/organization/encirq-corporation
http://www.ubiquitous.co.jp/en/news/press/pdf/p1730_01.pdf
http://www.ubiquitous.co.jp/en/products/db/md/devicesql/

LIST OF FIGURES 64

10 Mixer status packets . 10
11 CDJ status packets . 12
12 CDJ state flag bits . 14
13 Sync control packet . 18
14 Tempo master takeover request packet 19
15 Tempo master takeover response packet 19
16 DB Server query packet . 20
17 Number Fields of length 1, 2, and 4 21
18 Binary (Blob) Field . 22
19 String Field . 22
20 Message Header . 23
21 Query context setup message . 24
22 Query context setup response 24
23 Rekordbox track metadata request message 25
24 Track metadata available response 25
25 Render Menu request message 26
26 Render track metadata request message 27
27 Menu header response . 27
28 Menu item response . 27
29 Menu footer response . 30
30 Track artwork request message 32
31 Track artwork response message 33
32 Example album art window . 34
33 Track beat grid request message 34
34 Track beat grid response message 35
35 Waveform preview request message 36
36 Waveform preview response message 37
37 Example waveform preview window 38
38 CDJ 900 waveform preview . 38
39 Waveform detail request message 38
40 Waveform detail response message 39
41 Nxs2 waveform preview request message 40
42 Nxs2 waveform preview response message 41
43 Sine sweep analysis . 42
44 Nxs2 waveform detail request message 43
45 Nxs2 waveform detail response message 44
46 Nxs2 waveform detail segment bits 44
47 Cue point request message . 44
48 Cue point response message . 46
49 Cue/loop point entry . 46
50 Extended cue point request message 47
51 Extended cue point response message 48
52 Extended cue/loop point entry 49
53 Full track list request message 50
54 Playlist request message . 52

LIST OF TABLES 65

55 Connection Teardown Message 54
56 Fader start packet . 59
57 On Air flags packet . 59
58 Load Track command packet . 60
59 Media query packet . 60
60 Media response packet . 61

List of Tables
1 Known 𝑃1 Values . 14
2 Known 𝑃3 Values . 16
3 Argument Tag Values . 23
4 Menu Item Arguments . 28
5 Known Menu Item Types . 30
5 Known Menu Item Types . 31
6 Track List Entries with Artists 50
6 Track List Entries with Artists 51
7 Sort Orders . 51
8 Folder List Entries . 53
9 Menu Request Types . 57
9 Menu Request Types . 58

http://deepsymmetry.org

http://deepsymmetry.org

	Mixer Startup
	CDJ Startup
	Tracking BPM and Beats
	Creating a Virtual CDJ
	Mixer Status Packets
	CDJ Status Packets
	Rekordbox Status Packets

	Sync and Tempo Master
	Sync Control
	Tempo Master Assignment
	Tempo Master Handoff
	Unsolicited Handoff

	Track Metadata
	Field Types
	Number Fields
	Binary Fields
	String Fields

	Messages
	Rekordbox Track Metadata
	Track Metadata Item 1: Title
	Track Metadata Item 2: Artist
	Track Metadata Item 3: Album Title
	Track Metadata Item 4: Duration
	Track Metadata Item 5: Tempo
	Track Metadata Item 6: Comment
	Track Metadata Item 7: Key
	Track Metadata Item 8: Rating
	Track Metadata Item 9: Color
	Track Metadata Item 10: Genre
	Track Metadata Item 11: Date Added

	Menu Footer Response
	Menu Item Types
	Non-Rekordbox Track Metadata
	Album Art
	Beat Grids
	Requesting Track Waveforms
	Requesting Nxs2 Track Waveforms
	Requesting Cue Points and Loops
	Requesting Nxs2 Cue Points and Loops
	Requesting All Tracks
	Alternate Track List Sort Orders

	Playlists
	Disconnecting
	Experimenting with Metadata

	Menu Requests
	Known Menu Request Types
	Search

	Fader Start
	Channels On Air
	Loading Tracks
	Media Slot Queries
	What's Missing?
	Background Research
	Mysterious Values
	Reading Data with Four Players
	CDJ Packets to Rekordbox
	Dysentery

	List of Figures
	List of Tables

