
Rekordbox Export Structure Analysis

James Elliott
Deep Symmetry, LLC

January 11, 2020

Abstract

Thefileswritten to externalmedia by rekordbox for use in player hardware con-
tain a wealth of information that can be used in place of queries to the remotedb
server on the players, which is important because they can be obtained from the
players’ NFS servers, even if there are four players in use sharing the same media.
Under those circumstances, remotedb queries are impossible. This article docu-
ments what has been learned so far about the files, and how to interpret them.

Contents
1 Database Exports 3

1.1 File Header . 3
1.2 Table Pages . 5
1.3 Table Rows . 8

1.3.1 Album Rows . 8
1.3.2 Artist Rows . 8
1.3.3 Artwork Rows . 9
1.3.4 Color Rows . 9
1.3.5 Genre Rows . 10
1.3.6 Key Rows . 10
1.3.7 Label Rows . 11
1.3.8 Playlist Tree Rows . 11
1.3.9 Playlist Entry Rows . 12
1.3.10 Track Rows . 12

1.4 DeviceSQL Strings . 15
1.4.1 Long ASCII Strings . 15
1.4.2 Long UTF-16 Big-Endian Strings 15
1.4.3 Short ASCII Strings . 16

1

CONTENTS 2

2 Analysis Files 16
2.1 Analysis File Header . 17
2.2 Analysis File Sections . 18

2.2.1 Beat Grid Tag . 18
2.2.2 Cue List Tag . 19
2.2.3 Extended (nxs2) Cue List Tag 21
2.2.4 Path Tag . 23
2.2.5 VBR Tag . 23
2.2.6 Waveform Preview Tag 24
2.2.7 Tiny Waveform Preview Tag 25
2.2.8 Waveform Detail Tag 25
2.2.9 Waveform Color Preview Tag 26
2.2.10 Waveform Color Detail Tag 27
2.2.11 Song Structure Tag . 28

3 Crate Digger 31

List of Figures 31

List of Tables 32

1 DATABASE EXPORTS 3

1 Database Exports
The starting point for finding track metadata from a player is the database export
file, which can be found within rekordbox media at the following path:

/PIONEER/rekordbox/export.pdb

(If you are using the Crate Digger FileFetcher to request this file, use
that path as the filePath argument, and use a mountPath value of /B/ if
you want to read it from the SD slot, or /C/ to obtain it from the USB slot).

The file is a relational database format designed to be efficiently used by very
low power devices (there were deployments on 16 bit devices with 32K of RAM).
Today you aremost likely to encounter itwithin thePioneerProfessionalDJ ecosys-
tem, because it is the format that their rekordbox software uses to write USB and
SDmediawhich can bemounted inDJ controllers and used to play andmixmusic.

The file consists of a series of fixed size pages. The first page contains a file
header which defines the page size and the locations of database tables of different
types, by the index of their first page. The rest of the pages consist of the data pages
for all of the tables identified in the header.

Each table ismade upof a series of rowswhichmay be spread across any number
of pages. The pages start with a header describing the page and linking to the next
page. The rest of the page is used as a heap: rows are scattered around it, and located
using an index structure that builds backwards from the end of the page. Each row
of a given type has a fixed size structure which links to any variable-sized strings by
their offsets within the page.

As changes are made to the table, some records may become unused, and there
may be gaps within the heap that are too small to be used by other data. There
is a bit map in the row index that identifies which rows are actually present. Rows
that are not presentmust be ignored: they do not contain valid (or even necessarily
well-formed) data.

The majority of the work in reverse-engineering this format was performed by
Henry Betts1 and Fabian Lesniak2, to whom I am hugely grateful.

1.1 File Header
Unless otherwise stated, allmulti-byte numbers in the file are stored in little-endian
byte order. Field names used in the Figures match the IDs assigned to them in the
Kaitai Struct specification3, unless that is too long to fit, inwhich case a subscripted
abbreviation is used, and the text will mention the actual struct field name.

The first page begins with the file header, shown in Figure 1. The header starts
with four zero bytes, followed by a four-byte integer, 𝑙𝑒𝑛_𝑝𝑎𝑔𝑒 at byte 04, that

1https://github.com/henrybetts/Rekordbox-Decoding
2https://github.com/flesniak/python-prodj-link
3https://github.com/Deep-Symmetry/crate-digger/blob/master/src/

main/kaitai/rekordbox_pdb.ksy

https://github.com/henrybetts/Rekordbox-Decoding
https://github.com/flesniak/python-prodj-link
https://github.com/Deep-Symmetry/crate-digger/blob/master/src/main/kaitai/rekordbox_pdb.ksy
https://github.com/Deep-Symmetry/crate-digger/blob/master/src/main/kaitai/rekordbox_pdb.ksy

1 DATABASE EXPORTS 4

0 1 2 3 4 5 6 7 8 9 a b c d e f

00 00 00 00 𝑙𝑒𝑛_𝑝𝑎𝑔𝑒 𝑛𝑢𝑚_𝑡𝑎𝑏𝑙𝑒𝑠 𝑛𝑒𝑥𝑡𝑢00

𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 00 00 00 0010

Table Pointers
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 1: File Header

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑡𝑦𝑝𝑒 𝑒𝑚𝑝𝑡𝑦𝑐 𝑓𝑖𝑟𝑠𝑡_𝑝𝑎𝑔𝑒 𝑙𝑎𝑠𝑡_𝑝𝑎𝑔𝑒00

Figure 2: Table Pointer

establishes the size of each page (including this first one), in bytes. This is followed
by another four-byte integer, 𝑛𝑢𝑚_𝑡𝑎𝑏𝑙𝑒𝑠 at byte 08, which reports the number
of different tables that are present in the file. Each table will have a table pointer en-
try in the “Table pointers” section of the file header, described below, that identifies
and locates the table.

The four-byte integer 𝑛𝑒𝑥𝑡𝑢 at byte 0c has an unknown purpose, but Mr.
Lesniak named it next_unused_page and said “Not used as any empty_candidate,
points past the end of the file.” The four-byte integer 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, at byte 14, was
described “Always incremented by at least one, sometimes by two or three.” and I
assume this means it reflects a version number that rekordbox updates when syn-
chronizing to the exported media.

Finally, there is another series of four zero bytes, and then the header ends with
the list of table pointers which begins at byte 1c. There are as many of these as
specified by 𝑛𝑢𝑚_𝑡𝑎𝑏𝑙𝑒𝑠, and each has the structure shown in Figure 2.

Each Table Pointer is a series of four four-byte integers. The first, 𝑡𝑦𝑝𝑒, iden-
tifies the type of table being defined. The known table types are shown in Table 1.
The second value, at byte 04 of the Table Pointer, was called 𝑒𝑚𝑝𝑡𝑦_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
byMr. Lesniak. Itmay link to a chain of empty pages if the database is ever garbage
collected, but this is speculation on my part.

1 DATABASE EXPORTS 5

Type Name RowContent
0 tracks Trackmetadata: title, artist, genre, artwork ID, play-

ing time, etc., Section 1.3.10.
1 genres Musical genres, for reference by tracks and search-

ing, Section 1.3.5.
2 artists Artists, for reference by tracks and searching, Sec-

tion 1.3.2.
3 albums Albums, for reference by tracks and searching, Sec-

tion 1.3.1.
4 labels Music labels, for reference by tracks and searching,

Section 1.3.7.
5 keys Musical keys, for reference by tracks, searching, and

key matching, Section 1.3.6.
6 colors Color labels, for reference by tracks and searching,

Section 1.3.4.
7 playlist_tree Describes the hierarchical tree structure of available

playlists and folders grouping them, Section 1.3.8.
8 playlist_entries Links tracks to playlists, in the right order, Sec-

tion 1.3.9.
13 artwork File paths of album artwork images, Section 1.3.3.
16 columns Details not yet confirmed.
19 history Records the tracks played during performances.

Table 1: Table Types

Other than the type, the two important values are 𝑓𝑖𝑟𝑠𝑡_𝑝𝑎𝑔𝑒 at byte08 and
𝑙𝑎𝑠𝑡_𝑝𝑎𝑔𝑒 at byte 0c. These tell us how to find the table. They are page indices,
where the page containing the file header has index 0, the page with index 1 begins
at byte 𝑙𝑒𝑛_𝑝𝑎𝑔𝑒, and so on. In other words, the first page of the table identi-
fied by the current Table Pointer can be found within the file starting at the byte
𝑙𝑒𝑛_𝑝𝑎𝑔𝑒 × 𝑓𝑖𝑟𝑠𝑡_𝑝𝑎𝑔𝑒.

The table is a linked list of pages: each page contains the index of the next page
after it. However, you need to keep track of the 𝑙𝑎𝑠𝑡_𝑝𝑎𝑔𝑒 value for the table,
because it tells you not to try to follow the next page link once you reach the page
with that index. (If youdokeep going, youwill start reading pages of somedifferent
table.) The structure of the table pages themselves are described in the next section.

As far as we know, the remainder of the first page after the table pointers is
unused.

1.2 Table Pages
The table header is followed by the table pages themselves. These each have the size
specified by 𝑙𝑒𝑛_𝑝𝑎𝑔𝑒 in Figure 1, and the structure shown in Figure 3.

Data pages all seem to have the header structure described here, but not all of
them actually store data. Some of them are “strange” and we have not yet figured

1 DATABASE EXPORTS 6

0 1 2 3 4 5 6 7 8 9 a b c d e f

00 00 00 00 𝑝𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 𝑡𝑦𝑝𝑒 𝑛𝑒𝑥𝑡_𝑝𝑎𝑔𝑒00

𝑢𝑛𝑘𝑛𝑜𝑤𝑛1 𝑢𝑛𝑘𝑛𝑜𝑤𝑛2 𝑛𝑟𝑠 𝑢3 𝑢4 𝑝𝑓 𝑓𝑟𝑒𝑒𝑠 𝑢𝑠𝑒𝑑𝑠10

𝑢5 𝑛𝑢𝑚𝑟𝑙 𝑢6 𝑢720

ℎ𝑒𝑎𝑝
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

𝑟𝑜𝑤_𝑔𝑟𝑜𝑢𝑝𝑠
… 𝑜𝑓𝑠17 𝑜𝑓𝑠16 𝑟𝑜𝑤𝑝𝑓1 𝑜𝑓𝑠15

𝑜𝑓𝑠14 𝑜𝑓𝑠13 𝑜𝑓𝑠12 𝑜𝑓𝑠11 𝑜𝑓𝑠10 𝑜𝑓𝑠9 𝑜𝑓𝑠8 𝑜𝑓𝑠7
𝑜𝑓𝑠6 𝑜𝑓𝑠5 𝑜𝑓𝑠4 𝑜𝑓𝑠3 𝑜𝑓𝑠2 𝑜𝑓𝑠1 𝑜𝑓𝑠0 𝑟𝑜𝑤𝑝𝑓0

Figure 3: Table Page

outwhy. Thediscussion belowdescribes how to recognize a strange page, and avoid
trying to read it as a data page.

The first four bytes of a table page always seem to be zero. This is followed by a
four-byte value 𝑝𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 which identifies the index of this page within the list
of table pages (the header has index 0, the first actual data page the index 1, and so
on). This value seems to be redundant, because it can be calculated by dividing the
offset of the start of the page by 𝑙𝑒𝑛_𝑝𝑎𝑔𝑒, but perhaps it serves as a sanity check.

This is followed by another four-byte value, 𝑡𝑦𝑝𝑒, which identifies the type of
the page, using the values shown in Table 1. This again seems redundant because
the table headerwhichwas followed to reach this page also identified the table type,
but perhaps it is another sanity check, or an alternate way to tell, when following
page links, that youhave reached the endof the table you are interested in. Speaking
of which, the next four-byte value, 𝑛𝑒𝑥𝑡_𝑝𝑎𝑔𝑒, is that link: it identifies the index
at which the next page of this table can be found, as long as we have not already
reached the final page of the table, as described in Section 1.1.

The exactmeaning of𝑢𝑛𝑘𝑛𝑜𝑤𝑛1 is unclear. Mr. Flesinak said “sequence num-
ber (0→1: 8→13, 1→2: 22, 2→3: 27)” but I don’t know how to interpret that.
Even less is known about 𝑢𝑛𝑘𝑛𝑜𝑤𝑛2. But 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠_𝑠𝑚𝑎𝑙𝑙 at byte 18within
the page (abbrviated 𝑛𝑟𝑠 in Figure 3) holds the number of rows that are present in
the page, unless 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠_𝑙𝑎𝑟𝑔𝑒 (below) holds a value that is larger (but not
equal to1fff). This seems like a strangemechanism for dealing with the fact that
some tables (like playlist entries) have a lot of very small rows, too many to count
with a single byte. But then why not just always use 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠_𝑙𝑎𝑟𝑔𝑒?

1 DATABASE EXPORTS 7

The purpose of the next two bytes are is also unclear. Of 𝑢3 Mr. Flesniak said
“a bitmask (first track: 32)”, and he described 𝑢4 as often 0, sometimes larger, es-
pecially for pages with a high number of rows (e.g. 12 for 101 rows).

Byte 1b is called 𝑝𝑎𝑔𝑒_𝑓𝑙𝑎𝑔𝑠 (abbrviated 𝑝𝑓 in Figure 3). According to Mr.
Flesniak, “strange” (non-data) pages will have the value 44 or 64, and other pages
have had the values 24 or 34. Crate Digger considers a page to be a data page if
𝑝𝑎𝑔𝑒_𝑓𝑙𝑎𝑔𝑠&40 = 0.

Bytes1c-1d are called 𝑓𝑟𝑒𝑒_𝑠𝑖𝑧𝑒 (abbreviated 𝑓𝑟𝑒𝑒𝑠 in Figure 3), and store
the amount of unused space in the page heap (excluding the row index which is
built backwards from the end of the page); 𝑢𝑠𝑒𝑑_𝑠𝑖𝑧𝑒 at bytes 1c-1d (abbrevi-
ated 𝑢𝑠𝑒𝑑𝑠) stores the number of bytes that are in use in the page heap.

Bytes 20-21, 𝑢5, are of unclear purpose. Mr. Flesniak labeled them “(0→1:
2).”

Bytes 20-21, 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠_𝑙𝑎𝑟𝑔𝑒 (abbrviated 𝑛𝑢𝑚𝑟𝑙 in Figure 3) hold the
number of entries in the row index at the endof the pagewhen that value is too large
to fit into 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠_𝑠𝑚𝑎𝑙𝑙 (as mentioned above), and that situation seems to
be indicated when this value is larger than 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠_𝑠𝑚𝑎𝑙𝑙, but not equal to
1fff.

𝑢6 at bytes24-25 seems to have the value1004 for strange pages, and0000
for data pages. And Mr. Flesniak describes 𝑢7 at bytes 26-27 as “always 0 except
1 for history pages, num entries for strange pages?”

After these header fields comes the page heap. Rows are allocated within this
heap starting at byte 28. Since rows can be different sizes, there needs to be a way
to locate them. This takes the form of a row index, which is built from the end of
the page backwards, in groups of up to sixteen row pointers along with a bitmask
sayingwhich of those rows are still part of the table (theymight have been deleted).

Thenumber of row index entries is determined, as described above, by the value
of either 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠_𝑠𝑚𝑎𝑙𝑙 or 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠_𝑙𝑎𝑟𝑔𝑒.

The bit mask for the first group of up to sixteen rows, labeled 𝑟𝑜𝑤𝑝𝑓0
in Fig-

ure 3 (meaning “row presence flags group 0”), is found in the last two bytes of the
page. The low order bit of this value will be set if row 0 is really present, the next
bit if row 1 is really present, and so on. The two bytes before these flags, labeled
𝑜𝑓𝑠0, store the offset of the first row in the page. This offset is the number of bytes
past the end of the page header at which the row itself can be found. So if row 0
begins at the very beginning of the heap, at byte 28 in the page, 𝑜𝑓𝑠0 would have
the value 0000.

As more rows are added to the page, space is allocated for them in the heap,
and additional index entries are added at the end of the heap, growing backwards.
Once there have been sixteen rows added, all of the bits in 𝑟𝑜𝑤𝑝𝑓0

are accounted
for, and when another row is added, before its offset entry 𝑜𝑓𝑠16 can be added,
another row bit-mask entry 𝑟𝑜𝑤𝑝𝑓1

needs to be allocated. And so the row index
grows backwards towards the rows that are being added forwards, and once they
are too close for a new row to fit, the page is full, and another page gets allocated
to the table.

1 DATABASE EXPORTS 8

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑢1 𝑖𝑠ℎ𝑖𝑓𝑡 𝑢𝑛𝑘𝑛𝑜𝑤𝑛2 𝑎𝑟𝑡𝑖𝑠𝑡_𝑖𝑑 𝑖𝑑00

𝑢𝑛𝑘𝑛𝑜𝑤𝑛3 𝑢4 𝑜𝑛10

Figure 4: Album Row

1.3 Table Rows
The structure of the rows themselves is determined by the 𝑡𝑦𝑝𝑒 of the table, using
the values shown in Table 1.

1.3.1 AlbumRows

Album rows hold an album name and ID along with an artist association, with
the structure shown in Figure 4. The unknown value at bytes 00-01 seems to
usually have the values 80 00. It is followed by a two-byte value Mr. Flesniak
called 𝑖𝑛𝑑𝑒𝑥_𝑠ℎ𝑖𝑓𝑡, although I don’t know what that means, and another four
bytes of unknown purpose. But at bytes 08-0b we finally find a value we have a
use for: 𝑎𝑟𝑡𝑖𝑠𝑡_𝑖𝑑 holds the IDof an artist row associatedwith this track row. This
is followed by 𝑖𝑑, the ID of this track row itself, at bytes 0c-0f. We assume that
there are index tables somewhere that would let us locate the page and row index
of a record given its table type and ID, but we have not yet found and figured them
out.

This is followed by five more bytes with unknown meaning, and the final byte
in the row, 𝑜𝑓𝑠_𝑛𝑎𝑚𝑒 is a pointer to the track name (labeled 𝑜𝑛 in Figure 4. To
find the locationof thename, add𝑜𝑓𝑠_𝑛𝑎𝑚𝑒bytes to the address of the start of the
track row itself. The name itself is encoded in a surprisingly baroqueway, explained
in Section 1.4

1.3.2 Artist Rows

Artist rows hold an Artist name and ID, with the structure shown in Figure 5 or
Figure 6. The 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 value at bytes 00-01 determines which variant is used.
If the artist name was allocated close enough to the row to be reached by a single
byte offset, offset, 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 has the value 0060, and the row has the structure in
Figure 5. If the name is too far away for that, 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 has the value 0064 and the
row has the structure in Figure 6.

In either case, 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 is followed by the unexplained two-byte value found
in many row types that Mr. Flesniak called 𝑖𝑛𝑑𝑒𝑥_𝑠ℎ𝑖𝑓𝑡, and then by 𝑖𝑑, the
ID of this artist row itself, at bytes 04-07, an unknown value at byte 08, and
𝑜𝑓𝑠_𝑛𝑎𝑚𝑒_𝑛𝑒𝑎𝑟 at byte 09 (labeled 𝑜𝑛 in Figure 5), the one-byte name offset
used only in the first variant.

If 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 is0064, the value of 𝑜𝑓𝑠_𝑛𝑎𝑚𝑒_𝑛𝑒𝑎𝑟 is ignored, and instead the
two-byte value 𝑜𝑓𝑠_𝑛𝑎𝑚𝑒_𝑓𝑎𝑟 (labeled 𝑜𝑓𝑎𝑟 in Figure 6) is used.

1 DATABASE EXPORTS 9

0 1 2 3 4 5 6 7 8 9 a b c d e f

0060 𝑖𝑠ℎ𝑖𝑓𝑡 𝑖𝑑 𝑢1 𝑜𝑛

Figure 5: Artist Row with Nearby Name

0 1 2 3 4 5 6 7 8 9 a b c d e f

0064 𝑖𝑠ℎ𝑖𝑓𝑡 𝑖𝑑 𝑢1 𝑜𝑛 𝑜𝑓𝑎𝑟

Figure 6: Artist Row with Far Name

Whichever name offset is used, it is a pointer to the artist name. To find the
location of the name, add the value of the offset to the address of the start of the
artist row itself. This gives the address of a DeviceSQL string holding the name,
with the structure explained in Section 1.4

1.3.3 Artwork Rows

Artwork rows hold an 𝑖𝑑 (which tracks refer to) and the path at which the corre-
sponding album art image file can be found, with the structure shown in Figure 7.
Note that in this case, the DeviceSQL string 𝑝𝑎𝑡ℎ is embedded directly into the
row itself, rather than being located elsewhere in the heap through an offset. The
structure of the string itself is still as described in Section 1.4.

1.3.4 Color Rows

Color rows hold a numeric color 𝑖𝑑 (which controls the actual color displayed on
the player interface) at bytes 05-06 and a text label or 𝑛𝑎𝑚𝑒 starting at byte 08
which is a DeviceSQL string shown in the information panel for tracks that are
assigned the color. The rows have the structure shown in Figure 8. There are several

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑖𝑑 𝑝𝑎𝑡ℎ00
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 7: Artwork Row

1 DATABASE EXPORTS 10

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑢𝑛𝑘𝑛𝑜𝑤𝑛1 𝑢2 𝑖𝑑 𝑢3 𝑛𝑎𝑚𝑒00
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 8: Color Row

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑖𝑑 𝑛𝑎𝑚𝑒00
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 9: Genre or Label Row

bytes in the row that are not yet known to have any meaning. The structure of
𝑛𝑎𝑚𝑒 is described in Section 1.4.

1.3.5 Genre Rows

Genre rowshold anumeric genre 𝑖𝑑 (which tracks canbe assigned) at bytes00-03
and a text 𝑛𝑎𝑚𝑒 starting at byte 04 which is a DeviceSQL string. The rows have
the structure shown in Figure 9. The structure of 𝑛𝑎𝑚𝑒 is described in Section 1.4.

1.3.6 Key Rows

Key rows represent musical keys. They hold a numeric 𝑖𝑑 (which tracks can be as-
signed) at bytes00-03 and a text𝑛𝑎𝑚𝑒 starting at byte08which is aDeviceSQL
string. (There seems to be a second copy of the ID at bytes 04-07.) The rows
have the structure shown in Figure 10. The structure of 𝑛𝑎𝑚𝑒 is described in Sec-
tion 1.4.

1 DATABASE EXPORTS 11

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑖𝑑 𝑖𝑑2 𝑛𝑎𝑚𝑒00
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 10: Key Row

1.3.7 Label Rows

Label rows represent record labels. They hold a numeric 𝑖𝑑 (which tracks can be as-
signed) at bytes00-03 and a text𝑛𝑎𝑚𝑒 starting at byte04which is aDeviceSQL
string. The rows have the structure shown in Figure 9. The structure of 𝑛𝑎𝑚𝑒 is
described in Section 1.4.

1.3.8 Playlist Tree Rows

Playlist tree rows areused toorganize thehierarchical structure of theplaylistmenu.
There is probably an index somewhere that makes it possible to find the right rows
directly when loading a playlist, but we have not yet figured out how indices work
in DeviceSQL databases, so Crate Digger simply reads all the rows and builds its
own in-memory index of the tree.

Playlist tree rows can either represent a playlist “folder” which contains other
folders and playlists, or a regular playlist which holds only tracks. The rows are
identified by an 𝑖𝑑 at bytes 0c-0f, and also contain a 𝑝𝑎𝑟𝑒𝑛𝑡_𝑖𝑑 at bytes 00-
03 which is how the hierarchical structure is represented: the contents of a folder
are the other rows in this table whose 𝑝𝑎𝑟𝑒𝑛𝑡_𝑖𝑑 folder is equal to the 𝑖𝑑 of the
folder.

Similarly, the tracks that make up a regular playlist are the Playlist Entry Rows
(described in Section 1.3.9) whose 𝑝𝑙𝑎𝑦𝑙𝑖𝑠𝑡_𝑖𝑑 is equal to this row’s 𝑖𝑑.

Each playlist tree row also has a text 𝑛𝑎𝑚𝑒 starting at byte 14 which is a De-
viceSQL string displayed when navigating the hierarchy, a 𝑠𝑜𝑟𝑡_𝑜𝑟𝑑𝑒𝑟 indicator
at bytes 08-0b (this may be the same value used to select sort orders when re-
questingmenus using thedbserver protocol, shown inTable 7 of the dysentery
ProtocolAnalysis paper, but this has not yet been confirmed), and a value that spec-
ifies whether the row defines a folder or a playlist. In the Kaitai Struct, this value
is called 𝑟𝑎𝑤_𝑖𝑠_𝑓𝑜𝑙𝑑𝑒𝑟, is found at bytes 10-13, and has a non-zero value for
folders. For convenience, the struct also defines a derived value, 𝑖𝑠_𝑓𝑜𝑙𝑑𝑒𝑟, which
is a boolean.

The rows have the structure shown in Figure 11. The structure of 𝑛𝑎𝑚𝑒 is

1 DATABASE EXPORTS 12

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑝𝑎𝑟𝑒𝑛𝑡_𝑖𝑑 𝑠𝑜𝑟𝑡_𝑜𝑟𝑑𝑒𝑟 𝑖𝑑00

𝑟𝑎𝑤_𝑖𝑠_𝑓𝑜𝑙𝑑𝑒𝑟 name10
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 11: Playlist Tree Row

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑒𝑛𝑡𝑟𝑦_𝑖𝑛𝑑𝑒𝑥 𝑡𝑟𝑎𝑐𝑘_𝑖𝑑 𝑝𝑙𝑎𝑦𝑙𝑖𝑠𝑡_𝑖𝑑

Figure 12: Playlist Entry Row

described in Section 1.4.

1.3.9 Playlist Entry Rows

Playlist entry rows list the tracks that belong to a particular playlist, and also estab-
lish the order in which they should be played. They have a very simple structure,
shown in Figure 12, containing only three values. The 𝑒𝑛𝑡𝑟𝑦_𝑖𝑛𝑑𝑒𝑥 at bytes 00-
03 specifies thepositionwithin theplaylist atwhich this entry belongs. The 𝑡𝑟𝑎𝑐𝑘_𝑖𝑑
at bytes 04-07 identifies the track to be played at this position in the playlist, by
corresponding to the 𝑖𝑑 of a row in the Track table described in Section 1.3.10,
and the 𝑝𝑙𝑎𝑦𝑙𝑖𝑠𝑡_𝑖𝑑 at bytes 08-0b identifies the playlist to which it belongs, by
corresponding to the 𝑖𝑑 of a row in the Playlist Tree described in Section 1.3.8.

1.3.10 Track Rows

Track rows describe audio tracks that can be played from the media export, and
provide many details about the music including links to other tables like artists,
albums, keys, and others. They have the structure shown in Figure 13.

The first two bytes, labeled 𝑢1, have an unknown purpose; they usually are
24 followed by 00. They are followed by the unexplained two-byte value found
in many row types that Mr. Flesniak called 𝑖𝑛𝑑𝑒𝑥_𝑠ℎ𝑖𝑓𝑡, and a four-byte value
he called 𝑏𝑖𝑡𝑚𝑎𝑠𝑘, although we do not know what the bits mean. The value at
bytes 08-0b, 𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑎𝑡𝑒, is the first one we have a solid understanding of: it
holds the playback sample rate of the audio file, in samples per second.

1 DATABASE EXPORTS 13

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑢1 𝑖𝑠ℎ𝑖𝑓𝑡 𝑏𝑖𝑡𝑚𝑎𝑠𝑘 𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑎𝑡𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟_𝑖𝑑00

𝑓𝑖𝑙𝑒_𝑠𝑖𝑧𝑒 𝑢2 𝑢3 𝑢4 𝑎𝑟𝑡𝑤𝑜𝑟𝑘_𝑖𝑑10

𝑘𝑒𝑦_𝑖𝑑 𝑜𝑟𝑖𝑔_𝑎𝑟𝑡𝑖𝑠𝑡_𝑖𝑑 𝑙𝑎𝑏𝑒𝑙_𝑖𝑑 𝑟𝑒𝑚𝑖𝑥𝑒𝑟_𝑖𝑑20

𝑏𝑖𝑡𝑟𝑎𝑡𝑒 𝑡𝑟𝑎𝑐𝑘_𝑛𝑢𝑚𝑏𝑒𝑟 𝑡𝑒𝑚𝑝𝑜 𝑔𝑒𝑛𝑟𝑒_𝑖𝑑30

𝑎𝑙𝑏𝑢𝑚_𝑖𝑑 𝑎𝑟𝑡𝑖𝑠𝑡_𝑖𝑑 𝑖𝑑 𝑑𝑖𝑠𝑐𝑛 𝑝𝑙𝑎𝑦𝑐40

𝑦𝑒𝑎𝑟 𝑠𝑑𝑒𝑝𝑡ℎ 𝑑𝑢𝑟 𝑢5 𝑐𝑖𝑑 𝑟 𝑢6 𝑢7 𝑜𝑓𝑠050

𝑜𝑓𝑠1 𝑜𝑓𝑠2 𝑜𝑓𝑠3 𝑜𝑓𝑠4 𝑜𝑓𝑠5 𝑜𝑓𝑠6 𝑜𝑓𝑠7 𝑜𝑓𝑠860

𝑜𝑓𝑠9 𝑜𝑓𝑠10 𝑜𝑓𝑠11 𝑜𝑓𝑠12 𝑜𝑓𝑠13 𝑜𝑓𝑠14 𝑜𝑓𝑠15 𝑜𝑓𝑠1670

𝑜𝑓𝑠17 𝑜𝑓𝑠18 𝑜𝑓𝑠19 𝑜𝑓𝑠2070

Figure 13: Track Row

Bytes 0c-0f hold the value 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟_𝑖𝑑 which identifies the composer of
the track, if known, as a non-zero 𝑖𝑑 value of an Artist row, as discussed in Sec-
tion 1.3.2. The size of the audio file, in bytes, is found in 𝑓𝑖𝑙𝑒_𝑠𝑖𝑧𝑒 at bytes 10-
13. This is followed by an unknown four-byte value, 𝑢2, which may be another
ID, and two unknown two-byte values, 𝑢3 (about which Mr. Flesniak says “always
19048?”) and 𝑢4 (“always 30967?”).

If there is cover art for the track, there will be a non-zero value in 𝑎𝑟𝑡𝑤𝑜𝑟𝑘_𝑖𝑑
(bytes1c-1f), identifying the 𝑖𝑑 of anArtwork row, as discussed in section 1.3.3.

If a dominant musical key was identified for the track there will be a non-zero
value in 𝑘𝑒𝑦_𝑖𝑑 (bytes 20-23), which represents the 𝑖𝑑 of a Key row, as dis-
cussed in Section 1.3.6. If the track is known to be a remake, the non-zero Artist
row 𝑖𝑑 (Section 1.3.2) of the original performer will be found at bytes 24-27 in
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑎𝑟𝑡𝑖𝑠𝑡_𝑖𝑑. If there is a known record label for the track, the non-zero
value in 𝑙𝑎𝑏𝑒𝑙_𝑖𝑑 will link to the 𝑖𝑑 of a Label row 𝑖𝑑 as described in Section 1.3.7.
Similarly, if there is a known remixer, therewill be a non-zero value in 𝑟𝑒𝑚𝑖𝑥𝑒𝑟_𝑖𝑑
(bytes 2c-2f) linking to the 𝑖𝑑 of an Artist row (Section 1.3.2).

The field 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 at bytes 30-33 stores the playback bit rate of the track, and
𝑡𝑟𝑎𝑐𝑘_𝑛𝑢𝑚𝑏𝑒𝑟 at bytes 34-37 holds the position of the track within its album.
𝑡𝑒𝑚𝑝𝑜 at bytes 38-3b holds the playback tempo of the start of the track in beats
per minute, multiplied by 100 (in order to support a precision of 1

100 BPM). If
there is a known genre for the track, there will be a non-zero value in 𝑔𝑒𝑛𝑟𝑒_𝑖𝑑 at
bytes 3c-3f, representing the 𝑖𝑑 of a Genre row as discussed in Section 1.3.5.

If the track is part of an album, there will be a non-zero value in 𝑎𝑙𝑏𝑢𝑚_𝑖𝑑
at bytes 40-43, and this will be the 𝑖𝑑 of an Album row as discussed in Sec-
tion 1.3.1. The Artist row 𝑖𝑑 (Section 1.3.2) of the primary performer associated
with the track is found in 𝑎𝑟𝑡𝑖𝑠𝑡_𝑖𝑑 at bytes44-47. And the 𝑖𝑑 of the track itself

1 DATABASE EXPORTS 14

is found in 𝑖𝑑 at bytes 48-4b. If the album is known to consist of multiple discs,
the disc number onwhich this track is foundwill be in𝑑𝑖𝑠𝑐_𝑛𝑢𝑚𝑏𝑒𝑟 at bytes4c-
4d. And the number of times the track has been played is found in 𝑝𝑙𝑎𝑦_𝑐𝑜𝑢𝑛𝑡
(bytes 4e-4f).

The year in which the track was recorded, if known, is in 𝑦𝑒𝑎𝑟 at bytes 50-
51. The sample depth of the track audio file (bits per sample) is in 𝑠𝑎𝑚𝑝𝑙𝑒_𝑑𝑒𝑝𝑡ℎ
at bytes 52-53. The playback time of the track (in seconds, at normal speed) is
in 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 at bytes 54-55. The purpose of the next two bytes, labeled 𝑢5, is
unknown, they seem to always hold the value 41.

Byte 58, 𝑐𝑜𝑙𝑜𝑟_𝑖𝑑 (labeled 𝑐𝑖𝑑 in Figure 13), holds the color assigned to the
track in rekordbox, as the 𝑖𝑑 of a Color row (described in Section 1.3.4), or zero
if no color has been assigned. Byte 59, 𝑟𝑎𝑡𝑖𝑛𝑔 (labeled 𝑟 in Figure 13) holds the
rating (0 to 5 stars) assigned the track. The next two bytes, labeled 𝑢6, have an
unknown purpose, and seem to always have the value 1. The two bytes after them,
labeled 𝑢7, are also unknown; Mr. Flesniak said “alternating 2 and 3”.

The rest of the track row is an array of 21 two-byte offsets that point to De-
viceSQL strings. To find the start of the string, add the address of the start of the
track row to the offset. The purpose of each string is described in Table 2, and the
structure of the strings themselves is explained in Section 1.4.

For convenience, the strings can be accessed as Kaitai Struct instance values
with the names shown in the table.

Index Name Content
0 𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑡𝑟𝑖𝑛𝑔_1 Unknown, so far always empty.
1 𝑡𝑒𝑥𝑡𝑒𝑟 Unknown, named by @flesniak.
2 𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑡𝑟𝑖𝑛𝑔_2 Unknown, “thought track number, wrong”.
3 𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑡𝑟𝑖𝑛𝑔_3 Unknown, “Strange strings.”4.
4 𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑡𝑟𝑖𝑛𝑔_4 “Strange strings” (as above).
5 𝑚𝑒𝑠𝑠𝑠𝑎𝑔𝑒 Unknown, named by @flesniak.
6 𝑘𝑢𝑣𝑜_𝑝𝑢𝑏𝑙𝑖𝑐 Empty or "ON".5
7 𝑎𝑢𝑡𝑜𝑙𝑜𝑎𝑑_ℎ𝑜𝑡𝑐𝑢𝑒𝑠 Empty or "ON".6
8 𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑡𝑟𝑖𝑛𝑔_5 Unknown.
9 𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑡𝑟𝑖𝑛𝑔_6 Unknown, usually empty.

10 𝑑𝑎𝑡𝑒_𝑎𝑑𝑑𝑒𝑑 When track was added to collection.
11 𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑑𝑎𝑡𝑒 When track was released.
12 𝑚𝑖𝑥_𝑛𝑎𝑚𝑒 Name of the track remix.
13 𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑡𝑟𝑖𝑛𝑔_7 Unknown, usually empty.
14 𝑎𝑛𝑎𝑙𝑦𝑧𝑒_𝑝𝑎𝑡ℎ File path of track analysis, see Section 2.

Table 2: Track Offset Strings

4Often zero length, sometimes low binary values, ASCII 01 or 02 as content.
5Apparently used rather than a simple bit flag to control whether the track information is visible on

Kuvo.
6Apparently used rather than a simple bit flag to control whether hot cues are automatically loaded for

the track.

1 DATABASE EXPORTS 15

0 1 2 3 4 5 6 7 8 9 a b c d e f

40 𝑙𝑒𝑛𝑔𝑡ℎ ASCII data00
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 14: Long ASCII DeviceSQL String

Index Name Content
15 𝑎𝑛𝑎𝑙𝑦𝑧𝑒_𝑑𝑎𝑡𝑒 When track analysis was performed.
16 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 Track comment assigned by DJ.
17 𝑡𝑖𝑡𝑙𝑒 Track title.
18 𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑡𝑟𝑖𝑛𝑔_8 Unknown, usually empty.
19 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒 Name of track audio file.
20 𝑓𝑖𝑙𝑒_𝑝𝑎𝑡ℎ File path of track audio.

Table 2: Track Offset Strings

1.4 DeviceSQL Strings
Many row types store string values, sometimes by directly embedding them, but
more often by storing an offset to a location elsewhere in the heap. In either case the
string itself uses the strange structure described in this section. Strings can be stored
in a variety of formats. The first byte of the structure, labeled 𝑙𝑒𝑛𝑔𝑡ℎ_𝑎𝑛𝑑_𝑘𝑖𝑛𝑑
in the parsedKaitai Struct, identifies the encoding type and, when the value is odd,
also the length (for short ASCII strings), as detailed in Section 1.4.3.

1.4.1 Long ASCII Strings

If 𝑙𝑒𝑛𝑔𝑡ℎ_𝑎𝑛𝑑_𝑘𝑖𝑛𝑑 has the value 40, it is followed by a two-byte 𝑙𝑒𝑛𝑔𝑡ℎ field,
and then followed by that many bytes of ASCII-encoded string data, as shown in
Figure 14.

1.4.2 Long UTF-16 Big-Endian Strings

If 𝑙𝑒𝑛𝑔𝑡ℎ_𝑎𝑛𝑑_𝑘𝑖𝑛𝑑 has the value 90, it is followed by a two-byte 𝑙𝑒𝑛𝑔𝑡ℎ field,
and then followed by that many bytes of UTF-16 big-endian encoded string data,
as shown in Figure 15.

2 ANALYSIS FILES 16

0 1 2 3 4 5 6 7 8 9 a b c d e f

90 𝑙𝑒𝑛𝑔𝑡ℎ UTF-16 Big-Endian data00
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 15: Long UTF-16-BE DeviceSQL String

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑚𝑙 ASCII data00
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 16: Short ASCII DeviceSQL String

1.4.3 Short ASCII Strings

If 𝑙𝑒𝑛𝑔𝑡ℎ_𝑎𝑛𝑑_𝑘𝑖𝑛𝑑 has an odd value it is a 𝑚𝑎𝑛𝑔𝑙𝑒𝑑_𝑙𝑒𝑛𝑔𝑡ℎ, labeled 𝑚𝑙 in
Figure 16. This means we are dealing with a short ASCII DeviceSQL string. To
find the length of the string data (which immediately follows this byte), subtract 1
from 𝑚𝑎𝑛𝑔𝑙𝑒𝑑_𝑙𝑒𝑛𝑔𝑡ℎ, divide it by 2, and subtract 1 again.

2 Analysis Files
When rekordbox analyzes tracks there is some data that is too big to fit in the
database itself. We have already seen some of that (the album art images, and of
course the track audio is left in the filesystem as well). The other analysis data is or-
ganized into “anlz” files, whose path can be found in theDeviceSQL string pointed
to by index 14 in the string offsets found at the end of the corresponding track row
(see Table 2 in Section 1.3.10). These files have names like ANLZ0001.DAT and
their structure is described in this section.

The files are “tagged type” files, where there is an overall file header section, and
then each entry in the file has its own header which identifies the type and length
of that section.

2 ANALYSIS FILES 17

0 1 2 3 4 5 6 7 8 9 a b c d e f

PMAI 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑓𝑖𝑙𝑒00

10

Tagged Sections
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

20

Figure 17: Analysis File Structure

Later player hardware added support for things like colored andmore-detailed
waveforms. Apparently these were deemed too large to fit in the .DAT files, so
another file was introduced, which shares the same base filename as the .DAT file,
but uses an extension of .EXT instead. Both kinds of file share the same structure,
but different sets of tags can be found in each.

2.1 Analysis File Header
For some reason the analysis files store their numbers in big-endian byte order,
the opposite of the export.pdb database file. Field names used in the Figures
match the IDs assigned to them in the Kaitai Struct specification7, unless that is
too long to fit, in which case a subscripted abbreviation is used, and the text will
mention the actual struct field name.

The file itself starts with the four-character code PMAI that identifies its for-
mat. Thisfile format identifier is followed a four-byte value, 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 (at bytes04-
07) that specifies the length of the file header in bytes. This is followed by another
four-byte value, 𝑙𝑒𝑛_𝑓𝑖𝑙𝑒, at bytes 08-0b that specifies the length of the whole
file in bytes.

The header seems to usually be 1c bytes long, though we do not yet know the
purpose of any of the header values that come after 𝑙𝑒𝑛_𝑓𝑖𝑙𝑒. After the header,
the file consists of a series of tagged sections, each with their own four-character
code identifying the seciton type, followed by a header and the section content.
This overall structure is illustrated in Figure 17, and the structure of the known tag
types is described next.

7https://github.com/Deep-Symmetry/crate-digger/blob/master/src/
main/kaitai/rekordbox_anlz.ksy

https://github.com/Deep-Symmetry/crate-digger/blob/master/src/main/kaitai/rekordbox_anlz.ksy
https://github.com/Deep-Symmetry/crate-digger/blob/master/src/main/kaitai/rekordbox_anlz.ksy

2 ANALYSIS FILES 18

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑓𝑜𝑢𝑟𝑐𝑐 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑡𝑎𝑔00

Tag-Specific Content10
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 18: Tagged Section Structure

2.2 Analysis File Sections
The structure of each tagged section has an “envelope” that can be understood
even if the internal structure of the section is unknown, making it easy to navi-
gate through the file looking for the section you need. This structure is very similar
to the file itself, and is illustrated in Figure 18.

Every section begins with a four-character code, 𝑓𝑜𝑢𝑟𝑐𝑐, identifying its spe-
cific structure and content, as described in the sections below. This is followed by a
four-byte value, 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟, which specifies how many bytes there are in the sec-
tion header, and another four-byte value, 𝑙𝑒𝑛_𝑡𝑎𝑔, which specifies the length of
the entire tagged section (including the header), in bytes. This value can be added
to the address of the start of the tag to find the start of the next tag.

There is notmuch value to 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟. If you study the structure of each type
of tagged section, you can see some sense of where the “header-like stuff ” ends, and
“content-like stuff ” begins, and this seems to line upwith the value of 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟.
But because there are important values in each tag’s header, and those always start
immediately after 𝑙𝑒𝑛_𝑡𝑎𝑔, it is simply easier to ignore the value of 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟,
and model the tag body as beginning at byte 0c of the tag. To show where the
boundary occurs, in the diagrams that follow, values that fall inside the byte range
of the header are colored yellow.

2.2.1 Beat Grid Tag

This kind of section holds a list of all beats found within the track, recording their
bar position, the time at which they occur, and the tempo at that point. It is iden-
tified by the four-character code PQTZ, which may stand for “Pioneer Quanti-
zation”. It has the structure shown in Figure 19. 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 is 18. The tag-
specific content starts with two unknown values, although Mr. Flesniak says that
𝑢𝑛𝑘𝑛𝑜𝑤𝑛2 seems to always have the value 00800000.

𝑙𝑒𝑛_𝑏𝑒𝑎𝑡𝑠 at bytes 14-17 specifies the number of beats were found in the
track, and thus the number of beat entries that will be present in this section. The

2 ANALYSIS FILES 19

0 1 2 3 4 5 6 7 8 9 a b c d e f

PQTZ 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑡𝑎𝑔 𝑢𝑛𝑘𝑛𝑜𝑤𝑛100

𝑢𝑛𝑘𝑛𝑜𝑤𝑛2 𝑙𝑒𝑛_𝑏𝑒𝑎𝑡𝑠 Beat Entries10
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 19: Beat Grid Tag

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑏𝑛𝑢𝑛 𝑡𝑒𝑚𝑝𝑜 𝑡𝑖𝑚𝑒

Figure 20: Beat Grid Beat

beat entries come next, and each has the structure shown in Figure 20.
Each beat entry is eight bytes long. It starts with 𝑏𝑒𝑎𝑡_𝑛𝑢𝑚𝑏𝑒𝑟, a two-byte

number (abbreviated 𝑏𝑛𝑢𝑚 inFigure 20)which specifieswhere the beat fallswithin
itsmeasure. So the value is always 1, 2, 3, or 4. This is followedby a two-byte 𝑡𝑒𝑚𝑝𝑜
value, which records the track tempo at the point where this beat occurs, in beats
per minute multiplied by 100 (to allow a precision of 1

100 BPM). Finally, there is
a four-byte 𝑡𝑖𝑚𝑒 value, which specifies the time at which this beat would occur, in
milliseconds, when playing the track at its normal speed.

As noted above, there will be as many beat entries as 𝑙𝑒𝑛_𝑏𝑒𝑎𝑡𝑠 specifies. They
continue to the end of the tag.

2.2.2 Cue List Tag

This kind of section holds either a list of ordinary memory points and loops, or a
list of hot cues and hot loops. It is identified by the four-character codePCOB, and
has the structure shown in Figure 21. 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 is 18.

Note that since the release of the Nexus 2 series of players, there is a newer
tag available that contains more information and supports more hot cues, so you
should check for that before loading this tag. See Section 2.2.3 for details.

The 𝑡𝑦𝑝𝑒 value at bytes0c-0fdetermineswhether this sectionholdsmemory
points (if 𝑡𝑦𝑝𝑒 is 0) or hot cues (if 𝑡𝑦𝑝𝑒 is 1). The number of cue entries present
in the section is reported in 𝑙𝑒𝑛𝑐𝑢𝑒𝑠 at bytes 12-13, and we don’t yet know the
meaning of 𝑢𝑛𝑘 at bytes 10-11 or 𝑚𝑒𝑚𝑜𝑟𝑦_𝑐𝑜𝑢𝑛𝑡 at bytes 14-17. The re-
mainder of the section, from byte18 through 𝑙𝑒𝑛_𝑡𝑎𝑔 holds the cue entries them-

2 ANALYSIS FILES 20

0 1 2 3 4 5 6 7 8 9 a b c d e f

PCOB 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑡𝑎𝑔 𝑡𝑦𝑝𝑒00

𝑢𝑛𝑘 𝑙𝑒𝑛𝑐𝑢𝑒𝑠 𝑚𝑒𝑚𝑜𝑟𝑦_𝑐𝑜𝑢𝑛𝑡 Cue Entries10
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 21: Cue List Tag

0 1 2 3 4 5 6 7 8 9 a b c d e f

PCPT 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦 ℎ𝑜𝑡_𝑐𝑢𝑒00

𝑠𝑡𝑎𝑡𝑢𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛1 𝑜𝑓𝑖𝑟𝑠𝑡 𝑜𝑙𝑎𝑠𝑡 𝑡 𝑢𝑛𝑘𝑛𝑜𝑤𝑛210

𝑡𝑖𝑚𝑒 𝑙𝑜𝑜𝑝_𝑡𝑖𝑚𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛320

30

Figure 22: Cue List Entry

selves, with the structure shown in Figure 22.
Each cue entry is38 bytes long. It is structured as its ownminiature tag for un-

known reasons, starting with the four-character codePCPT (Pioneer Cue Point?),
and its own internal four-byte 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 and 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦 values (1c and 38
respectively).

If the cue is an ordinary memory point, ℎ𝑜𝑡_𝑐𝑢𝑒 at bytes 0c-0fwill be zero,
otherwise it identifies the number of the hot cue that this entry represents (Hot
Cue A is number 1, B is 2, and so on). The 𝑠𝑡𝑎𝑡𝑢𝑠 value at bytes 10-13 seems
to be a deletion indicator; if it is zero, the entry is ignored. Cues which the players
pay attention to have the value 1 here.

The next four bytes have an unknown purpose, but seem to always have the
value 00100000. They are followed by two two-byte values, which seem to be
for sorting the cues in the proper order in some strange way. 𝑜𝑟𝑑𝑒𝑟_𝑓𝑖𝑟𝑠𝑡 at
bytes 1a-1b (labeled 𝑜𝑓𝑖𝑟𝑠𝑡 in Figure 22) has the value ffff for the first cue,
0000 for the second, then 2, 3 and on. 𝑜𝑟𝑑𝑒𝑟_𝑙𝑎𝑠𝑡 at bytes 1a-1b (labeled
𝑜𝑙𝑎𝑠𝑡) has the value 1 for the first cue, 2 for the second, and so on, but ffff for
the last. It would seem that the cues could be perfectly well sorted by just one of
these fields, or indeed, by their 𝑡𝑖𝑚𝑒 values.

The first “non-header” field is 𝑡𝑦𝑝𝑒 at byte 1c (labeled 𝑡 in Figure 22), and it

2 ANALYSIS FILES 21

0 1 2 3 4 5 6 7 8 9 a b c d e f

PCO2 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑡𝑎𝑔 𝑡𝑦𝑝𝑒00

𝑙𝑒𝑛𝑐𝑢𝑒𝑠 0000 Cue Entries10
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 23: Extended (nxs2) Cue List Tag

specifies whether the entry records a simple position (if it has the value 1) or a loop
(if it has the value 2). The next three bytes have an unknown purpose, but seem to
always have the values 0003e8, or decimal 1000.

The value 𝑡𝑖𝑚𝑒 at bytes 20-23 records the position of the cue within the
track, as a number of milliseconds (representing when the cue would occur if the
track is being played at normal speed). If 𝑡𝑦𝑝𝑒 is 2, so this cue stores a loop, then
𝑙𝑜𝑜𝑝_𝑡𝑖𝑚𝑒 at bytes 24-27 stores the track time in milliseconds at which the
player should loop back to 𝑡𝑖𝑚𝑒.

We do not know what, if anything, is stored in the remaining bytes of the cue
entry.

2.2.3 Extended (nxs2) Cue List Tag

This is a variation of the Cue List Tag described in Section 2.2.2 that was intro-
duced with the Nexus 2 players to add support for more than three hot cues with
custom color assignments, as well as DJ-assigned comment text for each hot cue
and memory point. It also contains the information present in the standard Cue
List Tag, so you only need to read one set or the other. Beat Link tries to use the
extended tags if they are available, and falls back to using the older ones if they are
not.

Just like the older tag, this kindof sectionholds either a list of ordinarymemory
points and loops, or a list of hot cues and hot loops. It is identified by the four-
character code PCO2, and has the structure shown in Figure 23. 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 is
14.

The 𝑡𝑦𝑝𝑒 value at bytes 0c-0f determines whether this section holds mem-
ory points (if 𝑡𝑦𝑝𝑒 is 0) or hot cues (if 𝑡𝑦𝑝𝑒 is 1). The number of cue entries
present in the section is reported in 𝑙𝑒𝑛𝑐𝑢𝑒𝑠 at bytes 10-11, and we don’t yet
know the meaning of the remaining two header bytes. The remainder of the sec-
tion, from byte 14 through 𝑙𝑒𝑛_𝑡𝑎𝑔 holds the cue entries themselves, with the
structure shown in Figure 24.

2 ANALYSIS FILES 22

0 1 2 3 4 5 6 7 8 9 a b c d e f

PCP2 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦 ℎ𝑜𝑡_𝑐𝑢𝑒00

𝑡 𝑢𝑛𝑘𝑛𝑜𝑤𝑛1 𝑡𝑖𝑚𝑒 𝑙𝑜𝑜𝑝_𝑡𝑖𝑚𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛210

𝑙𝑒𝑛_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 𝑐𝑜𝑚𝑚𝑒𝑛𝑡20
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

𝑐 𝑟 𝑔 𝑏 𝑢𝑛𝑘𝑛𝑜𝑤𝑛3

Figure 24: Extended (nxs2) Cue List Entry

Each extended cue entry has a variable length. It is structured as its ownminia-
ture tag, startingwith the four-character codePCP2, and its own internal four-byte
𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 and 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦 values. While 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 has the fixed value 10,
𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦 is needed to determine the length of the entry, so the beginning of the
next one can be located.

If the cue is an ordinary memory point, ℎ𝑜𝑡_𝑐𝑢𝑒 at bytes 0c-0fwill be zero,
otherwise it identifies the number of the hot cue that this entry represents (Hot
Cue A is number 1, B is 2, and so on).

The 𝑠𝑡𝑎𝑡𝑢𝑠 flag and mysterious sort order values present in the older cue list
entry header are simply absent here.

The first “non-header” field is 𝑡𝑦𝑝𝑒 at byte 10 (labeled 𝑡 in Figure 24), and it
specifies whether the entry records a simple position (if it has the value 1) or a loop
(if it has the value 2). The next three bytes have an unknown purpose, but seem to
always have the values 0003e8, or decimal 1000.

The value 𝑡𝑖𝑚𝑒 at bytes 14-17 records the position of the cue within the
track, as a number of milliseconds (representing when the cue would occur if the
track is being played at normal speed). If 𝑡𝑦𝑝𝑒 is 2, so this cue stores a loop, then
𝑙𝑜𝑜𝑝_𝑡𝑖𝑚𝑒 at bytes 18-1b stores the track time in milliseconds at which the
player should loop back to 𝑡𝑖𝑚𝑒.

Thenext twelve bytes have anunknownpurpose, but seemtohave the value00,
except for the second byte which seems to have the value 10. They are followed by
𝑙𝑒𝑛_𝑐𝑜𝑚𝑚𝑒𝑛𝑡, which contains the length, in bytes, of the 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 field which
immediately follows it. If 𝑙𝑒𝑛_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 has a non-zero value, 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 will
hold the text of the comment, encoded as a UTF-16 Big Endian string with a trail-
ing NUL character. So the length will always be even, and (when non-zero) always
at least 4 (a one character comment followed by the trailing NUL).

Immediately after 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 (in other words, starting 𝑙𝑒𝑛_𝑐𝑜𝑚𝑚𝑒𝑛𝑡 + 1c

2 ANALYSIS FILES 23

0 1 2 3 4 5 6 7 8 9 a b c d e f

PPTH 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑡𝑎𝑔 𝑙𝑒𝑛_𝑝𝑎𝑡ℎ00

𝑝𝑎𝑡ℎ10
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 25: Path Tag

past the start of the entry) there are four one-byte values containing color infor-
mation. 𝑐𝑜𝑙𝑜𝑟𝐶𝑜𝑑𝑒 (labeled 𝑐 in Figure 24) appears to be a code identifying the
color with which rekordbox displays the cue, by looking it up in a table. There have
been sixteen codes identified, and their corresponding RGB colors can be found by
looking at thefindRecordboxColor staticmethod in theBeat Link library’s
CueList class.8 The next three bytes, 𝑐𝑜𝑙𝑜𝑟_𝑟𝑒𝑑 (labeled 𝑟), 𝑐𝑜𝑙𝑜𝑟_𝑔𝑟𝑒𝑒𝑛 (la-
beled 𝑔), and 𝑐𝑜𝑙𝑜𝑟_𝑏𝑙𝑢𝑒 (labeled 𝑏), make up an RGB color specification which
is similar, but not identical, to the color that rekordbox displays. We believe these
are the values used to illuminate the RGBLEDs in a player that has loaded the cue.
When no color is associated with the cue, all four of these bytes have the value 00.

We do not know what, if anything, is stored in the remaining bytes of the tag.

2.2.4 Path Tag

This kind of section holds the file path of the audio file for which the track anal-
ysis was performed. It is identified by the four-character code PPTH and has the
structure shown in Figure 25. 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 is 10.

𝑙𝑒𝑛_𝑝𝑎𝑡ℎ at bytes0c-0f holds the length of the file path value, whichmakes
up the entire tag body. 𝑝𝑎𝑡ℎ, which starts at byte 10, is a DeviceSQL string with
the structure described in Section 1.4.

2.2.5 VBRTag

This kind of section has not yet been explained, but it is believed to hold an index
allowing rapid seeking to particular timeswithin variable-bit-rate tracks. (Without
such a structure, it would be necessary to scan the entire file from the beginning to
find a frame starting at a particular time, which would be too slow for jumping to
memory points or hot cues deep within the track.) What is known of the structure

8https://deepsymmetry.org/beatlink/apidocs/

https://deepsymmetry.org/beatlink/apidocs/

2 ANALYSIS FILES 24

0 1 2 3 4 5 6 7 8 9 a b c d e f

PVBR 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑡𝑎𝑔 𝑢𝑛𝑘𝑛𝑜𝑤𝑛100

𝑢𝑛𝑘𝑛𝑜𝑤𝑛210
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 26: VBR Tag

0 1 2 3 4 5 6 7 8 9 a b c d e f

PWAV 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑡𝑎𝑔 𝑙𝑒𝑛_𝑝𝑟𝑒𝑣𝑖𝑒𝑤00

𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑑𝑎𝑡𝑎10
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 27: Waveform Preview Tag

is shown in Figure 26. The four-character code that identifies this type of section
is PVBR and 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 is 10.

2.2.6 Waveform Preview Tag

This kind of section holds a fixed-width monochrome preview of the track wave-
form, displayed above the touch strip on original nexus players, providing a birds-
eye view of the current playback position, and supporting direct needle jump to
specific track sections. It is identified by the four-character codePWAV and has the
structure shown in Figure 27. 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 is 14.

The purpose of the header bytes10-13 is unknown; they always seem to have
the value 00100000. The waveform preview data begins at byte 14 and is 400
(decimal) bytes long. Each byte encodes one vertical pixel-wide column of the
waveform preview. The height of the column is represented by the five low-order
bits of the byte (so it can range from 0 to 31 pixels high), and the whiteness of the
segment is represented by the three high-order bits. Segments with higher values

2 ANALYSIS FILES 25

0 1 2 3 4 5 6 7 8 9 a b c d e f

PWV3 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑡𝑎𝑔 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦_𝑏𝑦𝑡𝑒𝑠00

𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑒𝑛𝑡𝑟𝑖𝑒𝑠10
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 28: Waveform Detail Tag

in these bits sections are drawn in a less saturated (whiter) shade of blue.

2.2.7 TinyWaveform Preview Tag

This kind of section holds an even smaller fixed-widthmonochrome preview of the
track waveform, which seems to be displayed on the CDJ-900. It is identified by
the four-character code PWV2 but otherwise has the same structure as the larger
waveform preview tags shown in Figure 27. 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 is still 14, and header
bytes 10-13 also seem to have the value 00100000. The waveform preview
data begins at byte 14 and is 100 (decimal) bytes long. Each byte encodes one
vertical pixel-wide column of the waveform preview. The height of the column is
represented by the four low-order bits of the byte (so it can only range from 0 to 15
pixels high), and no other bits are used.

2.2.8 WaveformDetail Tag

This kind of section holds a variable-width and much larger monochrome preview
of the track waveform, which scrolls along while the track plays, giving a detailed
glimpse of the neighborhood of the current playback position. Since this is po-
tentially much larger than other analysis elements, and is not supported by older
players, it is stored in the extended analyis file (with extension .EXT). It is iden-
tified by the four-character code PWV3 and has the structure shown in Figure 28.
𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 is 18.

𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦_𝑏𝑦𝑡𝑒𝑠 identifies howmany bytes each waveform detail entry takes
up; for this kind of tag it always has the value 1. 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 specifies how many
entries are present in the tag. Each entry represents one half-frame of audio data,
and there are 75 frames per second, so for each second of track audio there are 150
waveformdetail entries. The purpose of the header bytes14-17 is unknown; they
always seem to have the value 00960000. The waveform detail entries begin at
byte 18. The interpretation of each byte is the same as for the Waveform Preview
data described in Section 2.2.6.

2 ANALYSIS FILES 26

0 1 2 3 4 5 6 7 8 9 a b c d e f

PWV4 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑡𝑎𝑔 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦_𝑏𝑦𝑡𝑒𝑠00

𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑒𝑛𝑡𝑟𝑖𝑒𝑠10
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 29: Waveform Color Preview Tag

2.2.9 WaveformColor Preview Tag

This kind of section holds a fixed-width color preview of the track waveform, dis-
played above the touch strip on nexus 2 players, providing a birds-eye view of the
current playback position, and supporting direct needle jump to specific track sec-
tions. It is also used in rekordbox itself. This is stored in the extended analyis file
(with extension .EXT). It is identified by the four-character code PWV4 and has
the structure shown in Figure 29. 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 is 18.

𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦_𝑏𝑦𝑡𝑒𝑠 identifies how many bytes each waveform preview entry
takes up; for this kind of tag it always has the value 6. 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 specifies how
many entries are present in the tag. The purpose of the header bytes 14-17 is un-
known. Thewaveform color preview data begins at byte18 and is 7,200 (decimal)
bytes long, representing 1,200 columns of waveform preview information.

The color waveform preview entries are the most complex of any of the wave-
form tags. See the discussion on Github9 for how the analysis was performed.
@jan2000 created an audio file containing a 10 second sine wave sweep from
20 Hz to 20 kHz, and analyzed that in rekordbox. The results are represented in
Figure 30.

As a summary, the top six stripes plot the values of each six channels of wave-
formpreview information. Thefirst byte of data is the first columnof the top stripe,
the next byte is the first column of the second stripe, and so on, until we reach the
seventh byte, which is the second column of the first stripe.

We are not sure what the top two stripes represent, but they do seem to have
an effect on the blue version of the waveform preview, so they somehow encode
“whiteness”. The next stripe, corresponding to byte 2 of each column, indicates
how much sound energy is present in the bottom half of the frequency range (it
drops around 10 KHz). The stripe corresponding to byte 3 reflects how much
sound energy is present in the bottom third of the frequency range, byte 4 reflects
how much sound energy is in the middle of the frequency range, and byte 5 tracks

9https://github.com/Deep-Symmetry/dysentery/issues/9

https://github.com/Deep-Symmetry/dysentery/issues/9

2 ANALYSIS FILES 27

Figure 30: Sine sweep analysis

the sound energy in the top of the frequency range.
The stripe labeled “color” reflect’s@jan2000’s algorithmfor combiningbytes 3,

4, and 5 into a color preview, and the bottom stripe is his approach for deriving the
blue preview from that and the other two stripes.

The calculations used byBeat Link to build its own color previews can be found
in the segmentColor and segmentHeightmethods of the Waveform-
Preview class10, and the way they are used to draw the actual graphical repre-
sentation can be found in the updateWaveformmethod of the Waveform-
PreviewComponent class11. These produce attractive results, but it is cer-
tainly possible that refinements can be found in the future.

2.2.10 WaveformColor Detail Tag

This kind of section holds a variable-width and much larger color preview of the
track waveform, introduced with the nexus 2 line, which scrolls along while the
track plays, giving a detailed glimpse of the neighborhood of the current playback
position. This is stored in the extended analyis file (with extension .EXT). It is

10https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/
beatlink/data/WaveformPreview.html

11https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/
beatlink/data/WaveformPreviewComponent.html

https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/data/WaveformPreview.html
https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/data/WaveformPreview.html
https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/data/WaveformPreviewComponent.html
https://deepsymmetry.org/beatlink/apidocs/org/deepsymmetry/beatlink/data/WaveformPreviewComponent.html

2 ANALYSIS FILES 28

0 1 2 3 4 5 6 7 8 9 a b c d e f

PWV5 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑡𝑎𝑔 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦_𝑏𝑦𝑡𝑒𝑠00

𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑒𝑛𝑡𝑟𝑖𝑒𝑠10
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 31: Waveform Color Detail Tag

f e d c b a 9 8 7 6 5 4 3 2 1 0

𝑟𝑒𝑑 𝑔𝑟𝑒𝑒𝑛 𝑏𝑙𝑢𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 0 0

Figure 32: Waveform color detail segment bits

identified by the four-character code PWV5 and has the structure shown in Fig-
ure 31. 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 is 18.

𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦_𝑏𝑦𝑡𝑒𝑠 identifies howmany bytes each waveform detail entry takes
up; for this kind of tag it always has the value 2. 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 specifies how many
entries are present in the tag. Each entry represents one half-frame of audio data,
and there are 75 frames per second, so for each second of track audio there are 150
waveformdetail entries. The purpose of the header bytes14-17 is unknown; they
may always have the value00960305. The color waveform detail entries begin at
byte 18.

Color detail entries are much simpler than color preview entries. They con-
sist of three-bit red, green, and blue components and a five-bit height component
packed into the sixteen bits of the two entry bytes. Considering each entry as a
two-byte big-endian integer, the red component is the three high-order bits. The
next three bits are the green component, followed by the three bits of blue inten-
sity, and finally five bits of height. The two low-order bits do not seem to be used.
This is shown in Figure 32.

2.2.11 Song Structure Tag

This kind of section is used only in rekordbox Performance Mode, and so does not
get exported to external media. If you want to work with song structure data, you
will need to find the extended analysis file on the computer hosting rekordbox.
Within that file, the section is identified by the four-character code PSSI and has
the structure shown in Figure 33. 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 is 20. Many thanks to Michael

2 ANALYSIS FILES 29

0 1 2 3 4 5 6 7 8 9 a b c d e f

PSSI 𝑙𝑒𝑛_ℎ𝑒𝑎𝑑𝑒𝑟 𝑙𝑒𝑛_𝑡𝑎𝑔 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦_𝑏𝑦𝑡𝑒𝑠00

𝑙𝑒𝑛𝑒 𝑠𝑡𝑦𝑙𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑒𝑛𝑑 𝑢𝑛𝑘𝑛𝑜𝑤𝑛210

𝑒𝑛𝑡𝑟𝑖𝑒𝑠20
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 33: Song Structure Tag

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑝ℎ𝑟𝑛𝑢𝑚 𝑏𝑒𝑎𝑡 𝑝ℎ𝑟𝑖𝑑 𝑢𝑛𝑘𝑛𝑜𝑤𝑛00

𝑓 𝑓𝑏10

Figure 34: Song Structure Entry

Ganss, https://github.com/mganss, for contributing this analysis.
𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑦_𝑏𝑦𝑡𝑒𝑠 identifies howmany bytes each phrase entry takes up; so far

it always has the value 18, so each entry takes twenty four bytes. 𝑙𝑒𝑛_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 at
bytes10-11 (labeled 𝑙𝑒𝑛𝑒 in Figure 33) specifies howmany entries are present in
the tag. Each entry represents one recognized phrase. 𝑝ℎ𝑟𝑎𝑠𝑒_𝑠𝑡𝑦𝑙𝑒 at bytes12-
13 (labeled 𝑝ℎ𝑟𝑎𝑠𝑒) specifies the overall type of phrase structure that rekordbox
chose to represent the song. The value 1 is an “up-down” style where the main
phrases consist of “UP”, “DOWN”, and “CHORUS”, and is represented in rekord-
box by white label text. The value 2 is a “bridge-verse” style where themain phrases
are labeled “VERSE”, “CHORUS”, and “BRIDGE”, and the label text in rekordbox
is black. Style 3 is mostly identical to bridge-verse, except verses 1–3 are labeled
“VERSE1” and verses 4–6 are labeled “VERSE2” in rekordbox.

The purpose of the header bytes 14-19 is unknown. 𝑒𝑛𝑑_𝑏𝑒𝑎𝑡 at bytes 1a-
1b (labeled 𝑒𝑛𝑑 in Figure 33) holds the beat number at which the last recognized
phrase ends. The track may continue beyond this, but will mostly be silence from
then on.

The final four bytes of the header, 1c-1f, also have an unknown purpose.
The phrase entries begin at byte 20, and each has the structure shown in Fig-

ure 34.
The first two bytes of each song structure entry hold 𝑝ℎ𝑟𝑎𝑠𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 (la-

beled 𝑝ℎ𝑟𝑛𝑢𝑚 in Figure 34) which numbers each phrase, starting at one and in-

https://github.com/mganss

2 ANALYSIS FILES 30

crementing with each entry. That is followed by 𝑏𝑒𝑎𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 (labeled 𝑏𝑒𝑎𝑡), a
two-byte value that specifies the beat at which this phrase begins in the track. It
continues until either the beat number of the next phrase, or the beat identified by
𝑒𝑛𝑑 in the tag header if this is the last entry.

𝑝ℎ𝑟𝑎𝑠𝑒_𝑖𝑑 at bytes 4-5 (labeled 𝑝ℎ𝑟𝑖𝑑 in Figure 34) specifies what kind of
phrase rekordbox has identified here. The interpretation depends on the value of
𝑝ℎ𝑟𝑎𝑠𝑒_𝑠𝑡𝑦𝑙𝑒 in the tag header, as is detailed in Table 3 below.

The purpose of the entry bytes6-14 is unknown. 𝑓𝑖𝑙𝑙_𝑖𝑛 at byte15 (labeled
𝑓 in Figure 34) is a flag that indicateswhether there are fill (non-phrase) beats at the
end of the phrase. If it is non-zero, then 𝑓𝑖𝑙𝑙_𝑖𝑛_𝑏𝑒𝑎𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 at bytes 16-17
(labeled 𝑓𝑏) holds the beat number at which the fill begins. When fill-in is present,
it is indicated in rekordbox by little dots on the full waveform. The manual says:

[Fill in] is a section that provides improvisational changes at the end
of phrase. [Fill in] is detected at the end of Intro, Up, andChorus (up
to 4 beats).

Phrase Style Phrase ID Label
1 1 INTRO
1 2 UP
1 3 DOWN
1 5 CHORUS
1 6 OUTRO

2 1 INTRO
2 2 VERSE1
2 3 VERSE2
2 4 VERSE3
2 5 VERSE4
2 6 VERSE5
2 7 VERSE6
2 8 BRIDGE
2 9 CHORUS
2 10 OUTRO

3 1 INTRO
3 2 VERSE1
3 3 VERSE1
3 4 VERSE1
3 5 VERSE2
3 6 VERSE2
3 7 VERSE2
3 8 BRIDGE
3 9 CHORUS

Table 3: Phrase Labels

3 CRATEDIGGER 31

Phrase Style Phrase ID Label
3 10 OUTRO

Table 3: Phrase Labels

Note that because Kaitai Struct does not allow multiple enum values to share
the same label, style 3 is modeled in Crate Digger as identical to style 2.

3 Crate Digger
You can find a Java library that can parse the structures described in this research,
and that can retrieve them from players’ NFS servers, at: https://github.
com/deep-symmetry/crate-digger

The project also contains Kaitai Struct specifications for the file structures,
which were used to automatically generate Java classes to parse them, and which
can be used to generate equivalent code for a variety of other programming lan-
guages.

There are also ONC RPC specification files which were similarly used to gen-
erate Java classes to communicate with theNFSv2 servers in the players, and which
can likely be used to generate structures for other languages as well.

List of Figures
1 File Header . 4
2 Table Pointer . 4
3 Table Page . 6
4 Album Row . 8
5 Artist Row with Nearby Name 9
6 Artist Row with Far Name . 9
7 Artwork Row . 9
8 Color Row . 10
9 Genre or Label Row . 10
10 Key Row . 11
11 Playlist Tree Row . 12
12 Playlist Entry Row . 12
13 Track Row . 13
14 Long ASCII DeviceSQL String 15
15 Long UTF-16-BE DeviceSQL String 16
16 Short ASCII DeviceSQL String 16
17 Analysis File Structure . 17
18 Tagged Section Structure . 18
19 Beat Grid Tag . 19
20 Beat Grid Beat . 19

https://github.com/deep-symmetry/crate-digger
https://github.com/deep-symmetry/crate-digger

LIST OF TABLES 32

21 Cue List Tag . 20
22 Cue List Entry . 20
23 Extended (nxs2) Cue List Tag 21
24 Extended (nxs2) Cue List Entry 22
25 Path Tag . 23
26 VBR Tag . 24
27 Waveform Preview Tag . 24
28 Waveform Detail Tag . 25
29 Waveform Color Preview Tag 26
30 Sine sweep analysis . 27
31 Waveform Color Detail Tag . 28
32 Waveform color detail segment bits 28
33 Song Structure Tag . 29
34 Song Structure Entry . 29

List of Tables
1 Table Types . 5
2 Track Offset Strings . 14
2 Track Offset Strings . 15
3 Phrase Labels . 30
3 Phrase Labels . 31

http://deepsymmetry.org

http://deepsymmetry.org

	Database Exports
	File Header
	Table Pages
	Table Rows
	Album Rows
	Artist Rows
	Artwork Rows
	Color Rows
	Genre Rows
	Key Rows
	Label Rows
	Playlist Tree Rows
	Playlist Entry Rows
	Track Rows

	DeviceSQL Strings
	Long ASCII Strings
	Long UTF-16 Big-Endian Strings
	Short ASCII Strings

	Analysis Files
	Analysis File Header
	Analysis File Sections
	Beat Grid Tag
	Cue List Tag
	Extended (nxs2) Cue List Tag
	Path Tag
	VBR Tag
	Waveform Preview Tag
	Tiny Waveform Preview Tag
	Waveform Detail Tag
	Waveform Color Preview Tag
	Waveform Color Detail Tag
	Song Structure Tag

	Crate Digger
	List of Figures
	List of Tables

